Electrocatalytic Conversion of Furanic Compounds

The electrocatalytic conversion of furanic compounds, i.e. mainly furfural and 5-hydroxymethylfurfural, has recently emerged as a potentially scalable technology for both oxidation and hydrogenation processes because of its highly valuable products. However, its practical application in industry is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS catalysis 2016-10, Vol.6 (10), p.6704-6717
Hauptverfasser: Kwon, Youngkook, Schouten, Klaas Jan P, van der Waal, Jan C, de Jong, Ed, Koper, Marc T. M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The electrocatalytic conversion of furanic compounds, i.e. mainly furfural and 5-hydroxymethylfurfural, has recently emerged as a potentially scalable technology for both oxidation and hydrogenation processes because of its highly valuable products. However, its practical application in industry is currently limited by low catalytic activity and product selectivity. Thus, a better understanding of the catalytic reactions as well as a strategy for the catalyst design can bring solutions for a complete and selective conversion into desired products. In this perspective, we review the status and challenges of electrocatalytic oxidation and hydrogenation of furanic compounds, including thermodynamics, voltammetric studies, and bulk electrolysis with important reaction parameters (i.e., catalyst, electrolyte, temperature, etc.) and reaction mechanisms. In addition, we introduce methods of energy-efficient electrocatalytic furanic synthesis by combining yields of anodic and cathodic reactions in a paired reactor or a reactor powered by a renewable energy source (i.e., solar energy). Current challenges and future opportunities are also discussed, aiming at industrial applications.
ISSN:2155-5435
2155-5435
DOI:10.1021/acscatal.6b01861