Lowering the Operating Temperature of Gold Acetylene Hydrochlorination Catalysts Using Oxidized Carbon Supports

The commercialization of gold for acetylene hydrochlorination represents a major scientific landmark. The development of second-generation gold catalysts continues with a focus on derivatives and drop-in replacements with higher activity and stability. Here, we show the influence that the support su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS catalysis 2022-11, Vol.12 (22), p.14086-14095
Hauptverfasser: Pattisson, Samuel, Dawson, Simon R., Malta, Grazia, Dummer, Nicholas F., Smith, Louise R., Lazaridou, Anna, Morgan, David J., Freakley, Simon J., Kondrat, Simon A., Smit, Joost J., Johnston, Peter, Hutchings, Graham J.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The commercialization of gold for acetylene hydrochlorination represents a major scientific landmark. The development of second-generation gold catalysts continues with a focus on derivatives and drop-in replacements with higher activity and stability. Here, we show the influence that the support surface oxygen has on the activity of carbon supported gold catalysts. Variation in the surface oxygen content of carbon is achieved through careful modification of the Hummers chemical oxidation method prior to the deposition of gold. All oxidized carbon-based catalysts resulted in a marked increase in activity at 200 °C when compared to the standard nontreated carbon, with an optimum oxygen content of ca. 18 at % being observed. Increasing oxygen and relative concentration of C–O functionality yields catalysts with light-off temperatures 30–50 °C below the standard catalyst. This understanding opens a promising avenue to produce high activity acetylene hydrochlorination catalysts that can operate at lower temperatures.
ISSN:2155-5435
2155-5435
DOI:10.1021/acscatal.2c04242