Highly Selective and Stable Isolated Non-Noble Metal Atom Catalysts for Selective Hydrogenation of Acetylene
A strategy to fabricate a stable and site-isolated Ni catalyst is reported. Specifically, Mo3S4 clusters allowed individual Ni atoms to bond with Mo and S to create a type of active site. A site-isolated Ni1MoS/Al2O3 sample exhibited high performance in the selective hydrogenation of acetylene. Conc...
Gespeichert in:
Veröffentlicht in: | ACS catalysis 2022-01, Vol.12 (1), p.607-615 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A strategy to fabricate a stable and site-isolated Ni catalyst is reported. Specifically, Mo3S4 clusters allowed individual Ni atoms to bond with Mo and S to create a type of active site. A site-isolated Ni1MoS/Al2O3 sample exhibited high performance in the selective hydrogenation of acetylene. Concretely, 90% ethylene selectivity was achievable at full acetylene conversion under relatively mild reaction conditions without any obvious decay in performance observed during longer testing periods. In contrast, a reference catalyst with Ni ensembles exhibited poor selectivity and stability. Density functional theory (DFT) calculations suggested that H2 molecules were activated by a heterolytic route over Ni1MoS/Al2O3, which enhanced the reaction rate. Improved selectivity originated from the unique isolated Niδ+ structure induced by Mo and S, which facilitated product desorption as opposed to overhydrogenation or oligomerization. This work provides a feasible way to construct site-isolated catalysts with higher active metal loadings and opens up an opportunity for selective hydrogenation. |
---|---|
ISSN: | 2155-5435 2155-5435 |
DOI: | 10.1021/acscatal.1c04758 |