Mechanistic Insights into Dideoxygenation in Gentamicin Biosynthesis
Gentamicin is an important aminoglycoside antibiotic used for treatment of infections caused by Gram-negative bacteria. Although most of the biosynthetic pathways of gentamicin have been elucidated, a remaining intriguing question is how the intermediates JI-20A and JI-20B undergo a dideoxygenation...
Gespeichert in:
Veröffentlicht in: | ACS catalysis 2021-10, Vol.11 (19), p.12274-12283 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Gentamicin is an important aminoglycoside antibiotic used for treatment of infections caused by Gram-negative bacteria. Although most of the biosynthetic pathways of gentamicin have been elucidated, a remaining intriguing question is how the intermediates JI-20A and JI-20B undergo a dideoxygenation to form gentamicin C complex. Here we show that the dideoxygenation process starts with GenP-catalyzed phosphorylation of JI-20A and JI-20Ba. The phosphorylated products are successively modified by concerted actions of two PLP (pyridoxal 5′-phosphate)-dependent enzymes: elimination of water and then phosphate by GenB3 and double bond migration by GenB4. Each of these reactions liberates an imine which hydrolyses to a ketone or aldehyde and is then reaminated by GenB3 using an amino donor. Importantly, crystal structures of GenB3 and GenB4 have guided site-directed mutagenesis to reveal crucial residues for the enzymes’ functions. We propose catalytic mechanisms for GenB3 and GenB4, which shed light on the already unrivalled catalytic versatility of PLP-dependent enzymes. |
---|---|
ISSN: | 2155-5435 2155-5435 |
DOI: | 10.1021/acscatal.1c03508 |