Nickel/Photoredox Dual Catalytic Cross-Coupling of Alkyl and Amidyl Radicals to Construct C(sp3)–N Bonds
The construction of C(sp3)–N bonds via direct radical–radical cross-coupling under benign conditions is a desirable but challenging approach. Herein, the cross-coupling of alkyl and amidyl radicals to build aliphatic C–N bonds in a concise, mild, and oxidant-free manner is implemented by nickel/pho...
Gespeichert in:
Veröffentlicht in: | ACS catalysis 2021-05, Vol.11 (9), p.5026-5034 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The construction of C(sp3)–N bonds via direct radical–radical cross-coupling under benign conditions is a desirable but challenging approach. Herein, the cross-coupling of alkyl and amidyl radicals to build aliphatic C–N bonds in a concise, mild, and oxidant-free manner is implemented by nickel/photoredox dual catalysis. In this protocol, the single electron transfer strategy is successfully employed to generate N- and C-centered radicals from sulfonyl azides/azidoformates and alkyltrifluoroborates, respectively. The photocatalyst-induced triplet–triplet energy-transfer mechanism, however, might not be applicable to this reaction. The oxidative quenching pathway of the excited photocatalyst (RuII/*RuII/RuIII/RuII) combined with a possible NiI/NiII/NiIII/NiI catalytic cycle is proposed to account for the nickel/photoredox dual-catalyzed C(sp3)–N bond formation based on synergistic experimental and computational studies. |
---|---|
ISSN: | 2155-5435 2155-5435 |
DOI: | 10.1021/acscatal.1c00731 |