Reconstructing the Coordination Environment of Platinum Single-Atom Active Sites for Boosting Oxygen Reduction Reaction

Exploring highly efficient platinum single-atom (Pt1) catalysts for oxygen reduction reaction (ORR) is desired to greatly reduce the catalysts costs of polymer electrolyte membrane (PEM) fuel cells. Herein, based on a nitrogen-doped active carbon (N-doped Black Pearl, NBP), an atomically dispersed P...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS catalysis 2021-01, Vol.11 (1), p.466-475
Hauptverfasser: Liu, Jing, Bak, Junu, Roh, Jeonghan, Lee, Kug-Seung, Cho, Ara, Han, Jeong Woo, Cho, EunAe
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Exploring highly efficient platinum single-atom (Pt1) catalysts for oxygen reduction reaction (ORR) is desired to greatly reduce the catalysts costs of polymer electrolyte membrane (PEM) fuel cells. Herein, based on a nitrogen-doped active carbon (N-doped Black Pearl, NBP), an atomically dispersed Pt-based electrocatalyst is first prepared via a hydrothermal ethanol reduction method with Pt content of about 5 wt % (Pt1/NBP), and it shows high selectivity for the two-electron oxygen reduction pathway. Through further high-temperature pyrolysis, the coordination environment of these isolated Pt atoms is reconstructed to form uniquely nitrogen-anchored platinum single-atom active sites (Pt1@Pt/NBP) for a highly efficient four-electron oxygen reduction pathway. The obtained Pt1@Pt/NBP catalyst presents excellent ORR performance and stability as well as fast ORR kinetics at a high potential region. As a cathode catalyst of a PEM fuel cell, Pt1@Pt/NBP demonstrates 8.7 times higher mass activity than the commercial Pt/C at a cell voltage of 0.9 V.
ISSN:2155-5435
2155-5435
DOI:10.1021/acscatal.0c03330