Controlled Delivery of Growth Factor by Hierarchical Nanostructured Core–Shell Nanofibers for the Efficient Repair of Critical-Sized Rat Calvarial Defect

Electrospun nanofibers have received much attention as bone tissue-engineered scaffolds for their capacity to mimic the structure of natural extracellular matrix (ECM). Most studies have reproduced nanofibers with smooth surface for tissue engineering. This is quite different from the triple-helical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS biomaterials science & engineering 2020-10, Vol.6 (10), p.5758-5770
Hauptverfasser: Huang, Chunpeng, Yang, Guang, Zhou, Shaobing, Luo, En, Pan, Jian, Bao, Chongyun, Liu, Xian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Electrospun nanofibers have received much attention as bone tissue-engineered scaffolds for their capacity to mimic the structure of natural extracellular matrix (ECM). Most studies have reproduced nanofibers with smooth surface for tissue engineering. This is quite different from the triple-helical nanotopography of natural collagen nanofibrils. In this study, hierarchical nanostructures were coated on the surface of drug-loaded core–shell nanofibers to mimic natural collagen nanofibrils. The nanoshish-kebab (SK) structure was decorated regularly on the surface of the nanofibers, and the inner-loaded bone morphogenetic protein 2 (BMP2) exhibited a gentle release pattern, similar to a zero-order release pattern in kinetics. The in vitro study also showed that the SK structure could accelerate cell proliferation, attachment, and osteogenic differentiation. Four groups of scaffolds were implanted in vivo to repair critical-sized rat calvarial defects: (1) PCL/PVA (control); (2) SK-PCL/PVA; (3) PCL/PVA-BMP2; and (4) SK-PCL/PVA-BMP2. Much more bone was formed in the SK-PCL/PVA group (24.57 ± 3.81%) than in the control group (1.21 ± 0.23%). The BMP2-loaded core–shell nanofibers with nanopatterned structure (SK-PCL/PVA-BMP2) displayed the best repair efficacy (76.38 ± 4.13%), followed by the PCL/PVA-BMP2 group (39.86 ± 5.74%). It was believed that the hierarchical nanostructured core–shell nanofibers could promote osteogeneration and that the SK structure showed synergistic ability with nanofiber-loaded BMP2 in vivo for bone regeneration. Thus, this BMP2-loaded core–shell nanofiber scaffold with hierarchical nanostructure holds great potential for bone tissue engineering applications.
ISSN:2373-9878
2373-9878
DOI:10.1021/acsbiomaterials.0c00837