Neutral Phosphine-Sulfonate Pd Complex-Catalyzed Copolymerization of 2‑Methoxystyrene and Ethylene Polar Monomers: A DFT Mechanistic Study
The density functional theory (DFT) method was employed to investigate the nature of the copolymerization reaction of ethylene monomers and 2-methoxystyrene catalyzed by a palladium phosphine-sulfonate complex. The calculated results indicate that (1) the ethylene molecules prefer to coordinate with...
Gespeichert in:
Veröffentlicht in: | ACS applied polymer materials 2022-08, Vol.4 (8), p.5901-5908 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The density functional theory (DFT) method was employed to investigate the nature of the copolymerization reaction of ethylene monomers and 2-methoxystyrene catalyzed by a palladium phosphine-sulfonate complex. The calculated results indicate that (1) the ethylene molecules prefer to coordinate with neutral phosphine-sulfonate Pd catalyst along the Pd–P side to generate an intermediate owning a cis-configuration, which indicate that the chain transfer proceeds from cis-3 but not trans-5. (2) Subsequently, the insertion of polar monomers in the chain propagation is easier than that of the ethylene monomer and adopts the 2,1 insertion pathway; meanwhile, the R-configuration pathway is more favorable than the S-configuration pathway in stage II. (3) After the polar monomer insertion, the β-H elimination pathway is easier than the ethylene insertion, which makes polar monomer insertion into the in-chain easier. This work revealed the mechanism of the copolymerization reaction of ethylene and 2-methoxystyrene catalyzed by a palladium phosphine-sulfonate complex, which could provide theoretical insights into the development of new transition-metal complexes for the copolymerization reaction. |
---|---|
ISSN: | 2637-6105 2637-6105 |
DOI: | 10.1021/acsapm.2c00786 |