Multifunctional Property Improvements by Combining Graphene and Conventional Fillers in Chlorosulfonated Polyethylene Rubber Composites
The incorporation of nanoparticles like multilayer graphene (MLG) into elastomeric composites boosts their technical performance, such as their mechanical behavior and electrical conductivity. Common filler types (carbon black (CB) and aluminum trihydroxide (ATH)) generally fulfill single, specific...
Gespeichert in:
Veröffentlicht in: | ACS applied polymer materials 2022-02, Vol.4 (2), p.1021-1034 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The incorporation of nanoparticles like multilayer graphene (MLG) into elastomeric composites boosts their technical performance, such as their mechanical behavior and electrical conductivity. Common filler types (carbon black (CB) and aluminum trihydroxide (ATH)) generally fulfill single, specific purposes and are often used in high loadings. CB typically reinforces rubber mechanically, while ATH increases flame retardancy. Small amounts of MLG reduce these high filler contents and maintain the multifunctional characteristics of rubber composites. In chlorosulfonated polyethylene (CSM) + ATH, an intrinsically flame-retardant rubber was designed to achieve the highest standards such as maximum average of heat emission (MARHE) |
---|---|
ISSN: | 2637-6105 2637-6105 |
DOI: | 10.1021/acsapm.1c01469 |