Wafer-Scale Black Arsenic–Phosphorus Thin-Film Synthesis Validated with Density Functional Perturbation Theory Predictions

Herein we report the wafer-scale synthesis of thin-film black arsenic–phosphorus (b-AsP) alloys via two-step solid-source molecular beam deposition (MBD) and subsequent hermetic thermal annealing. We characterize our thin films with a variety of compositional and structural metrology techniques. X-r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied nano materials 2018-09, Vol.1 (9), p.4737-4745
Hauptverfasser: Young, Eric P, Park, Junsoo, Bai, Tingyu, Choi, Christopher, DeBlock, Ryan H, Lange, Mike, Poust, Sumiko, Tice, Jesse, Cheung, Clincy, Dunn, Bruce S, Goorsky, Mark S, Ozolinš, Vidvuds, Streit, Dwight C, Gambin, Vincent
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4745
container_issue 9
container_start_page 4737
container_title ACS applied nano materials
container_volume 1
creator Young, Eric P
Park, Junsoo
Bai, Tingyu
Choi, Christopher
DeBlock, Ryan H
Lange, Mike
Poust, Sumiko
Tice, Jesse
Cheung, Clincy
Dunn, Bruce S
Goorsky, Mark S
Ozolinš, Vidvuds
Streit, Dwight C
Gambin, Vincent
description Herein we report the wafer-scale synthesis of thin-film black arsenic–phosphorus (b-AsP) alloys via two-step solid-source molecular beam deposition (MBD) and subsequent hermetic thermal annealing. We characterize our thin films with a variety of compositional and structural metrology techniques. X-ray photoelectron spectroscopy and energy dispersive spectroscopy determine compositions of As0.78P0.22 for our thin films, while X-ray reflectivity measurements indicate film thicknesses of 6–9 nm. High-resolution transmission electron spectroscopy images reveal a nanocrystalline morphology with orthorhombic b-AsP grains on the order of ∼5 nm. Raman scattering spectroscopy is employed to characterize the vibrational spectra of our thin films, and the results obtained are in agreement with previously reported b-AsP spectra. Evidence of uniform wafer-scale growth is substantiated by Raman mapping. We simulate crystal structure, band gaps, and Raman spectra from first-principles DFT-based computations and find excellent agreement with our experimental results. This work is the first demonstration of on-wafer synthesis of b-AsP. Our large-area growth technique enables the development of next-generation b-AsP devices for optoelectronic, digital, and radio frequency (RF) applications.
doi_str_mv 10.1021/acsanm.8b00951
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsanm_8b00951</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b047425162</sourcerecordid><originalsourceid>FETCH-LOGICAL-a274t-2fb29316db24bf8ca0c94af278b25e68804e1f11ac27908822e345304a3c72d53</originalsourceid><addsrcrecordid>eNp1kM1Kw0AUhQdRsNRuXc9aSL0zmTTJslarQsFCqy7DzWRCpqaTMjNBAi58B9_QJzG1XbhxdX8458D5CLlkMGbA2TVKh2Y7TnKANGInZMCjWASQxnD6Zz8nI-c2AMBSNgkBBuTjFUtlg5XEWtGbGuUbnVqnjJbfn1_LqnG7qrGto-tKm2Cu6y1ddcZXymlHX7DWBXpV0HftK3qrjNO-o_PWSK8bgzVdKutbm-P-7CNUYzu6tKrQvwJ3Qc5KrJ0aHeeQPM_v1rOHYPF0_zibLgLksfABL3OehmxS5FzkZSIRZCqw5HGS80hNkgSEYiVjKHmcQpJwrkIRhSAwlDEvonBIxodcaRvnrCqzndVbtF3GINvjyw74siO-3nB1MPT_bNO0ti_j_hP_APSpdSw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Wafer-Scale Black Arsenic–Phosphorus Thin-Film Synthesis Validated with Density Functional Perturbation Theory Predictions</title><source>American Chemical Society (ACS)</source><creator>Young, Eric P ; Park, Junsoo ; Bai, Tingyu ; Choi, Christopher ; DeBlock, Ryan H ; Lange, Mike ; Poust, Sumiko ; Tice, Jesse ; Cheung, Clincy ; Dunn, Bruce S ; Goorsky, Mark S ; Ozolinš, Vidvuds ; Streit, Dwight C ; Gambin, Vincent</creator><creatorcontrib>Young, Eric P ; Park, Junsoo ; Bai, Tingyu ; Choi, Christopher ; DeBlock, Ryan H ; Lange, Mike ; Poust, Sumiko ; Tice, Jesse ; Cheung, Clincy ; Dunn, Bruce S ; Goorsky, Mark S ; Ozolinš, Vidvuds ; Streit, Dwight C ; Gambin, Vincent</creatorcontrib><description>Herein we report the wafer-scale synthesis of thin-film black arsenic–phosphorus (b-AsP) alloys via two-step solid-source molecular beam deposition (MBD) and subsequent hermetic thermal annealing. We characterize our thin films with a variety of compositional and structural metrology techniques. X-ray photoelectron spectroscopy and energy dispersive spectroscopy determine compositions of As0.78P0.22 for our thin films, while X-ray reflectivity measurements indicate film thicknesses of 6–9 nm. High-resolution transmission electron spectroscopy images reveal a nanocrystalline morphology with orthorhombic b-AsP grains on the order of ∼5 nm. Raman scattering spectroscopy is employed to characterize the vibrational spectra of our thin films, and the results obtained are in agreement with previously reported b-AsP spectra. Evidence of uniform wafer-scale growth is substantiated by Raman mapping. We simulate crystal structure, band gaps, and Raman spectra from first-principles DFT-based computations and find excellent agreement with our experimental results. This work is the first demonstration of on-wafer synthesis of b-AsP. Our large-area growth technique enables the development of next-generation b-AsP devices for optoelectronic, digital, and radio frequency (RF) applications.</description><identifier>ISSN: 2574-0970</identifier><identifier>EISSN: 2574-0970</identifier><identifier>DOI: 10.1021/acsanm.8b00951</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied nano materials, 2018-09, Vol.1 (9), p.4737-4745</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a274t-2fb29316db24bf8ca0c94af278b25e68804e1f11ac27908822e345304a3c72d53</citedby><cites>FETCH-LOGICAL-a274t-2fb29316db24bf8ca0c94af278b25e68804e1f11ac27908822e345304a3c72d53</cites><orcidid>0000-0001-5669-4740 ; 0000-0002-3860-5166</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsanm.8b00951$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsanm.8b00951$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27074,27922,27923,56736,56786</link.rule.ids></links><search><creatorcontrib>Young, Eric P</creatorcontrib><creatorcontrib>Park, Junsoo</creatorcontrib><creatorcontrib>Bai, Tingyu</creatorcontrib><creatorcontrib>Choi, Christopher</creatorcontrib><creatorcontrib>DeBlock, Ryan H</creatorcontrib><creatorcontrib>Lange, Mike</creatorcontrib><creatorcontrib>Poust, Sumiko</creatorcontrib><creatorcontrib>Tice, Jesse</creatorcontrib><creatorcontrib>Cheung, Clincy</creatorcontrib><creatorcontrib>Dunn, Bruce S</creatorcontrib><creatorcontrib>Goorsky, Mark S</creatorcontrib><creatorcontrib>Ozolinš, Vidvuds</creatorcontrib><creatorcontrib>Streit, Dwight C</creatorcontrib><creatorcontrib>Gambin, Vincent</creatorcontrib><title>Wafer-Scale Black Arsenic–Phosphorus Thin-Film Synthesis Validated with Density Functional Perturbation Theory Predictions</title><title>ACS applied nano materials</title><addtitle>ACS Appl. Nano Mater</addtitle><description>Herein we report the wafer-scale synthesis of thin-film black arsenic–phosphorus (b-AsP) alloys via two-step solid-source molecular beam deposition (MBD) and subsequent hermetic thermal annealing. We characterize our thin films with a variety of compositional and structural metrology techniques. X-ray photoelectron spectroscopy and energy dispersive spectroscopy determine compositions of As0.78P0.22 for our thin films, while X-ray reflectivity measurements indicate film thicknesses of 6–9 nm. High-resolution transmission electron spectroscopy images reveal a nanocrystalline morphology with orthorhombic b-AsP grains on the order of ∼5 nm. Raman scattering spectroscopy is employed to characterize the vibrational spectra of our thin films, and the results obtained are in agreement with previously reported b-AsP spectra. Evidence of uniform wafer-scale growth is substantiated by Raman mapping. We simulate crystal structure, band gaps, and Raman spectra from first-principles DFT-based computations and find excellent agreement with our experimental results. This work is the first demonstration of on-wafer synthesis of b-AsP. Our large-area growth technique enables the development of next-generation b-AsP devices for optoelectronic, digital, and radio frequency (RF) applications.</description><issn>2574-0970</issn><issn>2574-0970</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM1Kw0AUhQdRsNRuXc9aSL0zmTTJslarQsFCqy7DzWRCpqaTMjNBAi58B9_QJzG1XbhxdX8458D5CLlkMGbA2TVKh2Y7TnKANGInZMCjWASQxnD6Zz8nI-c2AMBSNgkBBuTjFUtlg5XEWtGbGuUbnVqnjJbfn1_LqnG7qrGto-tKm2Cu6y1ddcZXymlHX7DWBXpV0HftK3qrjNO-o_PWSK8bgzVdKutbm-P-7CNUYzu6tKrQvwJ3Qc5KrJ0aHeeQPM_v1rOHYPF0_zibLgLksfABL3OehmxS5FzkZSIRZCqw5HGS80hNkgSEYiVjKHmcQpJwrkIRhSAwlDEvonBIxodcaRvnrCqzndVbtF3GINvjyw74siO-3nB1MPT_bNO0ti_j_hP_APSpdSw</recordid><startdate>20180928</startdate><enddate>20180928</enddate><creator>Young, Eric P</creator><creator>Park, Junsoo</creator><creator>Bai, Tingyu</creator><creator>Choi, Christopher</creator><creator>DeBlock, Ryan H</creator><creator>Lange, Mike</creator><creator>Poust, Sumiko</creator><creator>Tice, Jesse</creator><creator>Cheung, Clincy</creator><creator>Dunn, Bruce S</creator><creator>Goorsky, Mark S</creator><creator>Ozolinš, Vidvuds</creator><creator>Streit, Dwight C</creator><creator>Gambin, Vincent</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5669-4740</orcidid><orcidid>https://orcid.org/0000-0002-3860-5166</orcidid></search><sort><creationdate>20180928</creationdate><title>Wafer-Scale Black Arsenic–Phosphorus Thin-Film Synthesis Validated with Density Functional Perturbation Theory Predictions</title><author>Young, Eric P ; Park, Junsoo ; Bai, Tingyu ; Choi, Christopher ; DeBlock, Ryan H ; Lange, Mike ; Poust, Sumiko ; Tice, Jesse ; Cheung, Clincy ; Dunn, Bruce S ; Goorsky, Mark S ; Ozolinš, Vidvuds ; Streit, Dwight C ; Gambin, Vincent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a274t-2fb29316db24bf8ca0c94af278b25e68804e1f11ac27908822e345304a3c72d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Young, Eric P</creatorcontrib><creatorcontrib>Park, Junsoo</creatorcontrib><creatorcontrib>Bai, Tingyu</creatorcontrib><creatorcontrib>Choi, Christopher</creatorcontrib><creatorcontrib>DeBlock, Ryan H</creatorcontrib><creatorcontrib>Lange, Mike</creatorcontrib><creatorcontrib>Poust, Sumiko</creatorcontrib><creatorcontrib>Tice, Jesse</creatorcontrib><creatorcontrib>Cheung, Clincy</creatorcontrib><creatorcontrib>Dunn, Bruce S</creatorcontrib><creatorcontrib>Goorsky, Mark S</creatorcontrib><creatorcontrib>Ozolinš, Vidvuds</creatorcontrib><creatorcontrib>Streit, Dwight C</creatorcontrib><creatorcontrib>Gambin, Vincent</creatorcontrib><collection>CrossRef</collection><jtitle>ACS applied nano materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Young, Eric P</au><au>Park, Junsoo</au><au>Bai, Tingyu</au><au>Choi, Christopher</au><au>DeBlock, Ryan H</au><au>Lange, Mike</au><au>Poust, Sumiko</au><au>Tice, Jesse</au><au>Cheung, Clincy</au><au>Dunn, Bruce S</au><au>Goorsky, Mark S</au><au>Ozolinš, Vidvuds</au><au>Streit, Dwight C</au><au>Gambin, Vincent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wafer-Scale Black Arsenic–Phosphorus Thin-Film Synthesis Validated with Density Functional Perturbation Theory Predictions</atitle><jtitle>ACS applied nano materials</jtitle><addtitle>ACS Appl. Nano Mater</addtitle><date>2018-09-28</date><risdate>2018</risdate><volume>1</volume><issue>9</issue><spage>4737</spage><epage>4745</epage><pages>4737-4745</pages><issn>2574-0970</issn><eissn>2574-0970</eissn><abstract>Herein we report the wafer-scale synthesis of thin-film black arsenic–phosphorus (b-AsP) alloys via two-step solid-source molecular beam deposition (MBD) and subsequent hermetic thermal annealing. We characterize our thin films with a variety of compositional and structural metrology techniques. X-ray photoelectron spectroscopy and energy dispersive spectroscopy determine compositions of As0.78P0.22 for our thin films, while X-ray reflectivity measurements indicate film thicknesses of 6–9 nm. High-resolution transmission electron spectroscopy images reveal a nanocrystalline morphology with orthorhombic b-AsP grains on the order of ∼5 nm. Raman scattering spectroscopy is employed to characterize the vibrational spectra of our thin films, and the results obtained are in agreement with previously reported b-AsP spectra. Evidence of uniform wafer-scale growth is substantiated by Raman mapping. We simulate crystal structure, band gaps, and Raman spectra from first-principles DFT-based computations and find excellent agreement with our experimental results. This work is the first demonstration of on-wafer synthesis of b-AsP. Our large-area growth technique enables the development of next-generation b-AsP devices for optoelectronic, digital, and radio frequency (RF) applications.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsanm.8b00951</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5669-4740</orcidid><orcidid>https://orcid.org/0000-0002-3860-5166</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2574-0970
ispartof ACS applied nano materials, 2018-09, Vol.1 (9), p.4737-4745
issn 2574-0970
2574-0970
language eng
recordid cdi_crossref_primary_10_1021_acsanm_8b00951
source American Chemical Society (ACS)
title Wafer-Scale Black Arsenic–Phosphorus Thin-Film Synthesis Validated with Density Functional Perturbation Theory Predictions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A39%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wafer-Scale%20Black%20Arsenic%E2%80%93Phosphorus%20Thin-Film%20Synthesis%20Validated%20with%20Density%20Functional%20Perturbation%20Theory%20Predictions&rft.jtitle=ACS%20applied%20nano%20materials&rft.au=Young,%20Eric%20P&rft.date=2018-09-28&rft.volume=1&rft.issue=9&rft.spage=4737&rft.epage=4745&rft.pages=4737-4745&rft.issn=2574-0970&rft.eissn=2574-0970&rft_id=info:doi/10.1021/acsanm.8b00951&rft_dat=%3Cacs_cross%3Eb047425162%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true