Wafer-Scale Black Arsenic–Phosphorus Thin-Film Synthesis Validated with Density Functional Perturbation Theory Predictions
Herein we report the wafer-scale synthesis of thin-film black arsenic–phosphorus (b-AsP) alloys via two-step solid-source molecular beam deposition (MBD) and subsequent hermetic thermal annealing. We characterize our thin films with a variety of compositional and structural metrology techniques. X-r...
Gespeichert in:
Veröffentlicht in: | ACS applied nano materials 2018-09, Vol.1 (9), p.4737-4745 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4745 |
---|---|
container_issue | 9 |
container_start_page | 4737 |
container_title | ACS applied nano materials |
container_volume | 1 |
creator | Young, Eric P Park, Junsoo Bai, Tingyu Choi, Christopher DeBlock, Ryan H Lange, Mike Poust, Sumiko Tice, Jesse Cheung, Clincy Dunn, Bruce S Goorsky, Mark S Ozolinš, Vidvuds Streit, Dwight C Gambin, Vincent |
description | Herein we report the wafer-scale synthesis of thin-film black arsenic–phosphorus (b-AsP) alloys via two-step solid-source molecular beam deposition (MBD) and subsequent hermetic thermal annealing. We characterize our thin films with a variety of compositional and structural metrology techniques. X-ray photoelectron spectroscopy and energy dispersive spectroscopy determine compositions of As0.78P0.22 for our thin films, while X-ray reflectivity measurements indicate film thicknesses of 6–9 nm. High-resolution transmission electron spectroscopy images reveal a nanocrystalline morphology with orthorhombic b-AsP grains on the order of ∼5 nm. Raman scattering spectroscopy is employed to characterize the vibrational spectra of our thin films, and the results obtained are in agreement with previously reported b-AsP spectra. Evidence of uniform wafer-scale growth is substantiated by Raman mapping. We simulate crystal structure, band gaps, and Raman spectra from first-principles DFT-based computations and find excellent agreement with our experimental results. This work is the first demonstration of on-wafer synthesis of b-AsP. Our large-area growth technique enables the development of next-generation b-AsP devices for optoelectronic, digital, and radio frequency (RF) applications. |
doi_str_mv | 10.1021/acsanm.8b00951 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsanm_8b00951</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b047425162</sourcerecordid><originalsourceid>FETCH-LOGICAL-a274t-2fb29316db24bf8ca0c94af278b25e68804e1f11ac27908822e345304a3c72d53</originalsourceid><addsrcrecordid>eNp1kM1Kw0AUhQdRsNRuXc9aSL0zmTTJslarQsFCqy7DzWRCpqaTMjNBAi58B9_QJzG1XbhxdX8458D5CLlkMGbA2TVKh2Y7TnKANGInZMCjWASQxnD6Zz8nI-c2AMBSNgkBBuTjFUtlg5XEWtGbGuUbnVqnjJbfn1_LqnG7qrGto-tKm2Cu6y1ddcZXymlHX7DWBXpV0HftK3qrjNO-o_PWSK8bgzVdKutbm-P-7CNUYzu6tKrQvwJ3Qc5KrJ0aHeeQPM_v1rOHYPF0_zibLgLksfABL3OehmxS5FzkZSIRZCqw5HGS80hNkgSEYiVjKHmcQpJwrkIRhSAwlDEvonBIxodcaRvnrCqzndVbtF3GINvjyw74siO-3nB1MPT_bNO0ti_j_hP_APSpdSw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Wafer-Scale Black Arsenic–Phosphorus Thin-Film Synthesis Validated with Density Functional Perturbation Theory Predictions</title><source>American Chemical Society (ACS)</source><creator>Young, Eric P ; Park, Junsoo ; Bai, Tingyu ; Choi, Christopher ; DeBlock, Ryan H ; Lange, Mike ; Poust, Sumiko ; Tice, Jesse ; Cheung, Clincy ; Dunn, Bruce S ; Goorsky, Mark S ; Ozolinš, Vidvuds ; Streit, Dwight C ; Gambin, Vincent</creator><creatorcontrib>Young, Eric P ; Park, Junsoo ; Bai, Tingyu ; Choi, Christopher ; DeBlock, Ryan H ; Lange, Mike ; Poust, Sumiko ; Tice, Jesse ; Cheung, Clincy ; Dunn, Bruce S ; Goorsky, Mark S ; Ozolinš, Vidvuds ; Streit, Dwight C ; Gambin, Vincent</creatorcontrib><description>Herein we report the wafer-scale synthesis of thin-film black arsenic–phosphorus (b-AsP) alloys via two-step solid-source molecular beam deposition (MBD) and subsequent hermetic thermal annealing. We characterize our thin films with a variety of compositional and structural metrology techniques. X-ray photoelectron spectroscopy and energy dispersive spectroscopy determine compositions of As0.78P0.22 for our thin films, while X-ray reflectivity measurements indicate film thicknesses of 6–9 nm. High-resolution transmission electron spectroscopy images reveal a nanocrystalline morphology with orthorhombic b-AsP grains on the order of ∼5 nm. Raman scattering spectroscopy is employed to characterize the vibrational spectra of our thin films, and the results obtained are in agreement with previously reported b-AsP spectra. Evidence of uniform wafer-scale growth is substantiated by Raman mapping. We simulate crystal structure, band gaps, and Raman spectra from first-principles DFT-based computations and find excellent agreement with our experimental results. This work is the first demonstration of on-wafer synthesis of b-AsP. Our large-area growth technique enables the development of next-generation b-AsP devices for optoelectronic, digital, and radio frequency (RF) applications.</description><identifier>ISSN: 2574-0970</identifier><identifier>EISSN: 2574-0970</identifier><identifier>DOI: 10.1021/acsanm.8b00951</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied nano materials, 2018-09, Vol.1 (9), p.4737-4745</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a274t-2fb29316db24bf8ca0c94af278b25e68804e1f11ac27908822e345304a3c72d53</citedby><cites>FETCH-LOGICAL-a274t-2fb29316db24bf8ca0c94af278b25e68804e1f11ac27908822e345304a3c72d53</cites><orcidid>0000-0001-5669-4740 ; 0000-0002-3860-5166</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsanm.8b00951$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsanm.8b00951$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27074,27922,27923,56736,56786</link.rule.ids></links><search><creatorcontrib>Young, Eric P</creatorcontrib><creatorcontrib>Park, Junsoo</creatorcontrib><creatorcontrib>Bai, Tingyu</creatorcontrib><creatorcontrib>Choi, Christopher</creatorcontrib><creatorcontrib>DeBlock, Ryan H</creatorcontrib><creatorcontrib>Lange, Mike</creatorcontrib><creatorcontrib>Poust, Sumiko</creatorcontrib><creatorcontrib>Tice, Jesse</creatorcontrib><creatorcontrib>Cheung, Clincy</creatorcontrib><creatorcontrib>Dunn, Bruce S</creatorcontrib><creatorcontrib>Goorsky, Mark S</creatorcontrib><creatorcontrib>Ozolinš, Vidvuds</creatorcontrib><creatorcontrib>Streit, Dwight C</creatorcontrib><creatorcontrib>Gambin, Vincent</creatorcontrib><title>Wafer-Scale Black Arsenic–Phosphorus Thin-Film Synthesis Validated with Density Functional Perturbation Theory Predictions</title><title>ACS applied nano materials</title><addtitle>ACS Appl. Nano Mater</addtitle><description>Herein we report the wafer-scale synthesis of thin-film black arsenic–phosphorus (b-AsP) alloys via two-step solid-source molecular beam deposition (MBD) and subsequent hermetic thermal annealing. We characterize our thin films with a variety of compositional and structural metrology techniques. X-ray photoelectron spectroscopy and energy dispersive spectroscopy determine compositions of As0.78P0.22 for our thin films, while X-ray reflectivity measurements indicate film thicknesses of 6–9 nm. High-resolution transmission electron spectroscopy images reveal a nanocrystalline morphology with orthorhombic b-AsP grains on the order of ∼5 nm. Raman scattering spectroscopy is employed to characterize the vibrational spectra of our thin films, and the results obtained are in agreement with previously reported b-AsP spectra. Evidence of uniform wafer-scale growth is substantiated by Raman mapping. We simulate crystal structure, band gaps, and Raman spectra from first-principles DFT-based computations and find excellent agreement with our experimental results. This work is the first demonstration of on-wafer synthesis of b-AsP. Our large-area growth technique enables the development of next-generation b-AsP devices for optoelectronic, digital, and radio frequency (RF) applications.</description><issn>2574-0970</issn><issn>2574-0970</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM1Kw0AUhQdRsNRuXc9aSL0zmTTJslarQsFCqy7DzWRCpqaTMjNBAi58B9_QJzG1XbhxdX8458D5CLlkMGbA2TVKh2Y7TnKANGInZMCjWASQxnD6Zz8nI-c2AMBSNgkBBuTjFUtlg5XEWtGbGuUbnVqnjJbfn1_LqnG7qrGto-tKm2Cu6y1ddcZXymlHX7DWBXpV0HftK3qrjNO-o_PWSK8bgzVdKutbm-P-7CNUYzu6tKrQvwJ3Qc5KrJ0aHeeQPM_v1rOHYPF0_zibLgLksfABL3OehmxS5FzkZSIRZCqw5HGS80hNkgSEYiVjKHmcQpJwrkIRhSAwlDEvonBIxodcaRvnrCqzndVbtF3GINvjyw74siO-3nB1MPT_bNO0ti_j_hP_APSpdSw</recordid><startdate>20180928</startdate><enddate>20180928</enddate><creator>Young, Eric P</creator><creator>Park, Junsoo</creator><creator>Bai, Tingyu</creator><creator>Choi, Christopher</creator><creator>DeBlock, Ryan H</creator><creator>Lange, Mike</creator><creator>Poust, Sumiko</creator><creator>Tice, Jesse</creator><creator>Cheung, Clincy</creator><creator>Dunn, Bruce S</creator><creator>Goorsky, Mark S</creator><creator>Ozolinš, Vidvuds</creator><creator>Streit, Dwight C</creator><creator>Gambin, Vincent</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5669-4740</orcidid><orcidid>https://orcid.org/0000-0002-3860-5166</orcidid></search><sort><creationdate>20180928</creationdate><title>Wafer-Scale Black Arsenic–Phosphorus Thin-Film Synthesis Validated with Density Functional Perturbation Theory Predictions</title><author>Young, Eric P ; Park, Junsoo ; Bai, Tingyu ; Choi, Christopher ; DeBlock, Ryan H ; Lange, Mike ; Poust, Sumiko ; Tice, Jesse ; Cheung, Clincy ; Dunn, Bruce S ; Goorsky, Mark S ; Ozolinš, Vidvuds ; Streit, Dwight C ; Gambin, Vincent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a274t-2fb29316db24bf8ca0c94af278b25e68804e1f11ac27908822e345304a3c72d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Young, Eric P</creatorcontrib><creatorcontrib>Park, Junsoo</creatorcontrib><creatorcontrib>Bai, Tingyu</creatorcontrib><creatorcontrib>Choi, Christopher</creatorcontrib><creatorcontrib>DeBlock, Ryan H</creatorcontrib><creatorcontrib>Lange, Mike</creatorcontrib><creatorcontrib>Poust, Sumiko</creatorcontrib><creatorcontrib>Tice, Jesse</creatorcontrib><creatorcontrib>Cheung, Clincy</creatorcontrib><creatorcontrib>Dunn, Bruce S</creatorcontrib><creatorcontrib>Goorsky, Mark S</creatorcontrib><creatorcontrib>Ozolinš, Vidvuds</creatorcontrib><creatorcontrib>Streit, Dwight C</creatorcontrib><creatorcontrib>Gambin, Vincent</creatorcontrib><collection>CrossRef</collection><jtitle>ACS applied nano materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Young, Eric P</au><au>Park, Junsoo</au><au>Bai, Tingyu</au><au>Choi, Christopher</au><au>DeBlock, Ryan H</au><au>Lange, Mike</au><au>Poust, Sumiko</au><au>Tice, Jesse</au><au>Cheung, Clincy</au><au>Dunn, Bruce S</au><au>Goorsky, Mark S</au><au>Ozolinš, Vidvuds</au><au>Streit, Dwight C</au><au>Gambin, Vincent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wafer-Scale Black Arsenic–Phosphorus Thin-Film Synthesis Validated with Density Functional Perturbation Theory Predictions</atitle><jtitle>ACS applied nano materials</jtitle><addtitle>ACS Appl. Nano Mater</addtitle><date>2018-09-28</date><risdate>2018</risdate><volume>1</volume><issue>9</issue><spage>4737</spage><epage>4745</epage><pages>4737-4745</pages><issn>2574-0970</issn><eissn>2574-0970</eissn><abstract>Herein we report the wafer-scale synthesis of thin-film black arsenic–phosphorus (b-AsP) alloys via two-step solid-source molecular beam deposition (MBD) and subsequent hermetic thermal annealing. We characterize our thin films with a variety of compositional and structural metrology techniques. X-ray photoelectron spectroscopy and energy dispersive spectroscopy determine compositions of As0.78P0.22 for our thin films, while X-ray reflectivity measurements indicate film thicknesses of 6–9 nm. High-resolution transmission electron spectroscopy images reveal a nanocrystalline morphology with orthorhombic b-AsP grains on the order of ∼5 nm. Raman scattering spectroscopy is employed to characterize the vibrational spectra of our thin films, and the results obtained are in agreement with previously reported b-AsP spectra. Evidence of uniform wafer-scale growth is substantiated by Raman mapping. We simulate crystal structure, band gaps, and Raman spectra from first-principles DFT-based computations and find excellent agreement with our experimental results. This work is the first demonstration of on-wafer synthesis of b-AsP. Our large-area growth technique enables the development of next-generation b-AsP devices for optoelectronic, digital, and radio frequency (RF) applications.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsanm.8b00951</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5669-4740</orcidid><orcidid>https://orcid.org/0000-0002-3860-5166</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2574-0970 |
ispartof | ACS applied nano materials, 2018-09, Vol.1 (9), p.4737-4745 |
issn | 2574-0970 2574-0970 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acsanm_8b00951 |
source | American Chemical Society (ACS) |
title | Wafer-Scale Black Arsenic–Phosphorus Thin-Film Synthesis Validated with Density Functional Perturbation Theory Predictions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A39%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wafer-Scale%20Black%20Arsenic%E2%80%93Phosphorus%20Thin-Film%20Synthesis%20Validated%20with%20Density%20Functional%20Perturbation%20Theory%20Predictions&rft.jtitle=ACS%20applied%20nano%20materials&rft.au=Young,%20Eric%20P&rft.date=2018-09-28&rft.volume=1&rft.issue=9&rft.spage=4737&rft.epage=4745&rft.pages=4737-4745&rft.issn=2574-0970&rft.eissn=2574-0970&rft_id=info:doi/10.1021/acsanm.8b00951&rft_dat=%3Cacs_cross%3Eb047425162%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |