Wafer-Scale Black Arsenic–Phosphorus Thin-Film Synthesis Validated with Density Functional Perturbation Theory Predictions
Herein we report the wafer-scale synthesis of thin-film black arsenic–phosphorus (b-AsP) alloys via two-step solid-source molecular beam deposition (MBD) and subsequent hermetic thermal annealing. We characterize our thin films with a variety of compositional and structural metrology techniques. X-r...
Gespeichert in:
Veröffentlicht in: | ACS applied nano materials 2018-09, Vol.1 (9), p.4737-4745 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Herein we report the wafer-scale synthesis of thin-film black arsenic–phosphorus (b-AsP) alloys via two-step solid-source molecular beam deposition (MBD) and subsequent hermetic thermal annealing. We characterize our thin films with a variety of compositional and structural metrology techniques. X-ray photoelectron spectroscopy and energy dispersive spectroscopy determine compositions of As0.78P0.22 for our thin films, while X-ray reflectivity measurements indicate film thicknesses of 6–9 nm. High-resolution transmission electron spectroscopy images reveal a nanocrystalline morphology with orthorhombic b-AsP grains on the order of ∼5 nm. Raman scattering spectroscopy is employed to characterize the vibrational spectra of our thin films, and the results obtained are in agreement with previously reported b-AsP spectra. Evidence of uniform wafer-scale growth is substantiated by Raman mapping. We simulate crystal structure, band gaps, and Raman spectra from first-principles DFT-based computations and find excellent agreement with our experimental results. This work is the first demonstration of on-wafer synthesis of b-AsP. Our large-area growth technique enables the development of next-generation b-AsP devices for optoelectronic, digital, and radio frequency (RF) applications. |
---|---|
ISSN: | 2574-0970 2574-0970 |
DOI: | 10.1021/acsanm.8b00951 |