Wafer-Scale Black Arsenic–Phosphorus Thin-Film Synthesis Validated with Density Functional Perturbation Theory Predictions

Herein we report the wafer-scale synthesis of thin-film black arsenic–phosphorus (b-AsP) alloys via two-step solid-source molecular beam deposition (MBD) and subsequent hermetic thermal annealing. We characterize our thin films with a variety of compositional and structural metrology techniques. X-r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied nano materials 2018-09, Vol.1 (9), p.4737-4745
Hauptverfasser: Young, Eric P, Park, Junsoo, Bai, Tingyu, Choi, Christopher, DeBlock, Ryan H, Lange, Mike, Poust, Sumiko, Tice, Jesse, Cheung, Clincy, Dunn, Bruce S, Goorsky, Mark S, Ozolinš, Vidvuds, Streit, Dwight C, Gambin, Vincent
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Herein we report the wafer-scale synthesis of thin-film black arsenic–phosphorus (b-AsP) alloys via two-step solid-source molecular beam deposition (MBD) and subsequent hermetic thermal annealing. We characterize our thin films with a variety of compositional and structural metrology techniques. X-ray photoelectron spectroscopy and energy dispersive spectroscopy determine compositions of As0.78P0.22 for our thin films, while X-ray reflectivity measurements indicate film thicknesses of 6–9 nm. High-resolution transmission electron spectroscopy images reveal a nanocrystalline morphology with orthorhombic b-AsP grains on the order of ∼5 nm. Raman scattering spectroscopy is employed to characterize the vibrational spectra of our thin films, and the results obtained are in agreement with previously reported b-AsP spectra. Evidence of uniform wafer-scale growth is substantiated by Raman mapping. We simulate crystal structure, band gaps, and Raman spectra from first-principles DFT-based computations and find excellent agreement with our experimental results. This work is the first demonstration of on-wafer synthesis of b-AsP. Our large-area growth technique enables the development of next-generation b-AsP devices for optoelectronic, digital, and radio frequency (RF) applications.
ISSN:2574-0970
2574-0970
DOI:10.1021/acsanm.8b00951