Visible-Light-Triggered Reactive-Oxygen-Species-Mediated Antibacterial Activity of Peroxidase-Mimic CuO Nanorods
The rapid emergence of antibiotic-resistant bacterial strains warrants new strategies for infection control. NanoZymes are emerging as a new class of catalytic nanomaterials that mimic the biological action of natural enzymes. The development of photoactive NanoZymes offers a promising avenue to use...
Gespeichert in:
Veröffentlicht in: | ACS applied nano materials 2018-04, Vol.1 (4), p.1694-1704 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The rapid emergence of antibiotic-resistant bacterial strains warrants new strategies for infection control. NanoZymes are emerging as a new class of catalytic nanomaterials that mimic the biological action of natural enzymes. The development of photoactive NanoZymes offers a promising avenue to use light as a “trigger” to modulate the bacterial activity. Visible light activity is particularly desirable because it contributes to 44% of the total solar energy. Here we show that the favorable band structure of a CuO-nanorod-based NanoZyme catalyst (band gap of 1.44 eV) allows visible light to control the antibacterial activity. Photomodulation of the peroxidase-mimic activity of CuO nanorods enhances its affinity to H2O2, thereby remarkably accelerating the production of reactive oxygen species (ROS) by 20 times. This photoinduced NanoZyme-mediated ROS production catalyzes physical damage to the bacterial cells, thereby enhancing the antibacterial performance against Gram-negative-indicator bacteria Escherichia coli. |
---|---|
ISSN: | 2574-0970 2574-0970 |
DOI: | 10.1021/acsanm.8b00153 |