Protein-Templated Core/Shell Au Nanostructures for Intracellular Reactive Oxygen Species Detection by SERS
Core/shell gold “raspberry” nanostructures capable of multiple therapeutic functionalities were synthesized using a template composed of monodispersed anionic protein (bovine serum albumin) nanoparticles coated with a cationic biopolymer (poly-l-lysine). The nanostructures exhibited high phototherma...
Gespeichert in:
Veröffentlicht in: | ACS applied nano materials 2022-10, Vol.5 (10), p.14356-14366 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Core/shell gold “raspberry” nanostructures capable of multiple therapeutic functionalities were synthesized using a template composed of monodispersed anionic protein (bovine serum albumin) nanoparticles coated with a cationic biopolymer (poly-l-lysine). The nanostructures exhibited high photothermal conversion efficiency when exposed to a near-infrared (NIR) laser, which led to significant cellular inhibition of A549 human lung cancer cells due to intracellular hyperthermia. The raspberry structures also provided hot spots for surface-enhanced Raman scattering (SERS) ratiometric sensing of intracellular reactive oxygen species (ROS) when modified with the Raman reporter molecule 4-aminothiophenol (4-ATP). ROS was detected in A549 lung cancer cells upon photothermal heating of internalized nanostructures, enabling a possible mechanism for feedback on therapeutic efficacy. This was confirmed by adding the antioxidant N-acetylcysteine (NAC) and using a complementary fluorescence technique, which showed that the amount of detectable intracellular ROS decreased. These safe-by-design gold raspberry nanostructures could be promising for simultaneous therapeutic applications and monitoring therapeutic efficacy. |
---|---|
ISSN: | 2574-0970 2574-0970 |
DOI: | 10.1021/acsanm.2c02641 |