Piezo-enhanced Thermoelectric Properties of Highly Preferred c‑Axis ZnO Nanocrystal Films: Implications for Energy Harvesting

We propose a highly preferred c-axis-oriented but random in-plane-oriented nanocrystal to enhance the conversion of thermal to electrical energy for future energy harvesting. A highly preferred c-axis-oriented but random in-plane-oriented ZnO nanocrystal film is successfully fabricated by a homemade...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied nano materials 2021-09, Vol.4 (9), p.9430-9439
Hauptverfasser: Tsai, Shang Yu, Chen, Chun Chi, Huang, Jheng-Ming, Lai, Yu-Sheng, Ku, Ching-Shun, Lin, Chih-Ming, Ko, Fu-Hsiang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a highly preferred c-axis-oriented but random in-plane-oriented nanocrystal to enhance the conversion of thermal to electrical energy for future energy harvesting. A highly preferred c-axis-oriented but random in-plane-oriented ZnO nanocrystal film is successfully fabricated by a homemade precursor flow rate-interrupted atomic layer deposition (ALD) system. X-ray diffraction (XRD) results identify only a (002) peak in the ZnO nanocrystal films, and azimuthal ϕ scans reveal no folded symmetry in the films, indicating a highly preferred c-axis-oriented but random in-plane structure. The Seebeck coefficient is −0.345 mV/K, and the power factor is 3.66 × 10–4 W/(m K2) at 399.65 K as the D-spacing of the (002) orientation expands to 0.421%. These observations suggest that additional electrical conductivity can be induced by the piezoelectric effect in the c-axis lattice plane of the ZnO nanocrystal film and that phonon penetration is blocked by in-plane grain boundaries.
ISSN:2574-0970
2574-0970
DOI:10.1021/acsanm.1c01915