Differential Phagocytosis-Based Photothermal Ablation of Inflammatory Macrophages in Atherosclerotic Disease
Inflammatory macrophage (Mφ)-mediated atherosclerosis is a leading cause of mortality and morbidity worldwide. Photothermal therapy (PTT) has been demonstrated as an efficient strategy in killing target cells, and its application in the treatment of inflammation in atherosclerosis is developing. How...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2019-11, Vol.11 (44), p.41009-41018 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Inflammatory macrophage (Mφ)-mediated atherosclerosis is a leading cause of mortality and morbidity worldwide. Photothermal therapy (PTT) has been demonstrated as an efficient strategy in killing target cells, and its application in the treatment of inflammation in atherosclerosis is developing. However, the choice of nanomaterials, mechanisms, and side effects are seldom considered. In this study, semiconductor nanomaterials, that is, MoO2 nanoclusters, were synthesized and used for the first time in PTT for inflammatory Mφ-mediated atherosclerosis. Based on cell differential phagocytosis, the optimum amount of MoO2 and treatment time were selected to exert the maximum ablation effect on Mφ and minimal damage on endothelial cells without requiring additional target or selective groups. Moreover, MoO2-based PTT shows an excellent therapeutic effect on atherosclerosis by eliminating Mφ in animal models, with no significant side effects observed. This study explores a new method of nanotechnology and pharmaceutical development by using and optimizing cost-effective metal oxide nanostructures in the treatment of atherosclerosis and motivates further research on minimizing the side effects of related materials. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.9b12258 |