Structural Engineering of Si/TiO 2 /P3HT Heterojunction Photodetectors for a Tunable Response Range
To meet the demands of next-generation optoelectronic circuits, the design and construction of photodetectors with a tunable photoresponse range and self-powered feature are urgently required. To achieve selective wavelength detection, a band-pass filter is usually required to dislodge the interfere...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2019-01, Vol.11 (3), p.3241-3250 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To meet the demands of next-generation optoelectronic circuits, the design and construction of photodetectors with a tunable photoresponse range and self-powered feature are urgently required. To achieve selective wavelength detection, a band-pass filter is usually required to dislodge the interference of a certain wavelength light, which inevitably enhances the weight and increases the cost. Here, we demonstrate a self-powered photodetector with a tunable response range by constructing a heterojunction structure consisting of poly(3-hexylthiophene) (P3HT), a TiO
interlayer, and silicon nanowires. By controlling the P3HT concentration, both core-shell and embedded configurations can be obtained, which exhibit different response ranges. This work provides a convenient route to construct self-powered wavelength-selective photodetectors, which may find applications in light communication and biomedical engineering. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.8b20182 |