Nanosheets of Two-Dimensional Magnetic and Conducting Fe(II)/Fe(III) Mixed-Valence Metal–Organic Frameworks
We report the synthesis, magnetic properties, electrical conductivity, and delamination into thin nanosheets of two anilato-based Fe(II)/Fe(III) mixed-valence two-dimensional metal–organic frameworks (MOFs). Compounds [(H3O)(H2O)(phenazine)3][FeIIFeIII(C6O4X2)3]·12H2O [X = Cl (1) and Br (2)] pr...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2017-08, Vol.9 (31), p.26210-26218 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We report the synthesis, magnetic properties, electrical conductivity, and delamination into thin nanosheets of two anilato-based Fe(II)/Fe(III) mixed-valence two-dimensional metal–organic frameworks (MOFs). Compounds [(H3O)(H2O)(phenazine)3][FeIIFeIII(C6O4X2)3]·12H2O [X = Cl (1) and Br (2)] present a honeycomb layered structure with an eclipsed packing that generates hexagonal channels containing the water molecules. Both compounds show ferrimagnetic ordering at ca. 2 K coexisting with electrical conductivity (with room temperature conductivities of 0.03 and 0.003 S/cm). Changing the X group from Cl to Br leads to a decrease in the ordering temperature and room temperature conductivity that is correlated with the decrease of the electronegativity of X. Despite the ionic charge of the anilato-based layers, these MOFs can be easily delaminated in thin nanosheets with the thickness of a few monolayers. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.7b08322 |