Creating an Optimal Microenvironment within Mesoporous Silica MCM-41 for Capture of Tobacco-Specific Nitrosamines in Solution
To meet the requirement of capturing tobacco-specific nitrosamines (TSNA) for environment protection, a unique microenvironment was carefully created inside the channels of mesoporous silica MCM-41. In situ carbonization of template micelles at 923 K, combined with the excess aluminum used in one-po...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2017-08, Vol.9 (32), p.26805-26817 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To meet the requirement of capturing tobacco-specific nitrosamines (TSNA) for environment protection, a unique microenvironment was carefully created inside the channels of mesoporous silica MCM-41. In situ carbonization of template micelles at 923 K, combined with the excess aluminum used in one-pot synthesis of MCM-41, is adopted to tailor the tortuosity of mecsoporous channels, while loaded metal oxides (5 wt %) and the Al component in the framework are employed to exert the necessary electrostatic interaction toward the target carcinogens TSNA in solution. The elaborated microenvironment created in mesoporous sorbents was characterized with XRD, N2 adsorption–desorption, TEM, XPS, and TG-DSC methods. Various solutions of Burley- and Virginia-type tobaccos were used to assess the adsorption performance of new mesoporous sorbents, and the influence of the solid-to-liquid ratio, adsorption time, and loading amount of CuO on the adsorption was carefully examined. The representative sample 5%Cu/AM-10c could capture 27.2% of TSNA in Burley tobacco solution, and its capacity reached 0.3 mg g–1 in Snus tobacco extract solution, offering a promising candidate for the protection of the environment and public health. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.7b06264 |