As Precious as Platinum: Iron Nitride for Electrocatalytic Oxidation of Liquid Ammonia

The electrolysis of ammonia (NH3), a potential carrier for hydrogen fuel, has only been studied in detail in systems employing expensive, noble metal anodes such as platinum, ruthenium, and iridium. For NH3 to serve as a practical hydrogen storage medium, the electrolysis process must be energy effi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2017-05, Vol.9 (19), p.16228-16235
Hauptverfasser: Little, Daniel J, Edwards, Dillon O, Smith, Milton R, Hamann, Thomas W
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The electrolysis of ammonia (NH3), a potential carrier for hydrogen fuel, has only been studied in detail in systems employing expensive, noble metal anodes such as platinum, ruthenium, and iridium. For NH3 to serve as a practical hydrogen storage medium, the electrolysis process must be energy efficient, scalable, and inexpensive. Clearly, alternatives to precious metals would greatly reduce costs if the performance of less expensive, more abundant metals rivaled those of their expensive counterparts. In this regard, no metal is less expensive than iron. Iron exhibits complex anodic behavior in liquid ammonia (NH3(l)), with a high sensitivity to trace amounts of dissolved water, and a tendency to corrosively dissolve with appropriate applied bias. However, with sufficient applied overpotential in distilled NH3(l), an iron nitride film forms in situ that is resistant to dissolution. On this in situ-modified surface, dinitrogen evolution out-performs anodic dissolution with an efficiency of over 95%. Amazingly, the onset potential for dinitrogen evolution in NH3(l) on this in situ-modified iron surface is almost identical to what is measured on a platinum electrode.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.7b02639