Degenerately Doped Metal Oxide Nanocrystals as Plasmonic and Chemoresistive Gas Sensors
Highly doped wide band gap metal oxide nanocrystals have recently been proposed as building blocks for applications as transparent electrodes, electrochromics, plasmonics, and optoelectronics in general. Here we demonstrate the application of gallium-doped zinc oxide (GZO) nanocrystals as novel plas...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2016-11, Vol.8 (44), p.30440-30448 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Highly doped wide band gap metal oxide nanocrystals have recently been proposed as building blocks for applications as transparent electrodes, electrochromics, plasmonics, and optoelectronics in general. Here we demonstrate the application of gallium-doped zinc oxide (GZO) nanocrystals as novel plasmonic and chemiresistive sensors for the detection of hazardous gases including hydrogen (H2) and nitrogen dioxide (NO2). GZO nanocrystals with a tunable surface plasmon resonance in the near-infrared are obtained using a colloidal heat-up synthesis. Thanks to the strong sensitivity of the plasmon resonances to chemical and electrical changes occurring at the surface of the nanocrystals, such optical features can be used to detect the presence of toxic gases. By monitoring the changes in the dopant-induced plasmon resonance in the near-infrared, we demonstrate that GZO thin films prepared depositing an assembly of highly doped GZO colloids are able to optically detect both oxidizing and reducing gases at mild ( |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.6b09467 |