Quinone-Modified Mn-Doped ZnS Quantum Dots for Room-Temperature Phosphorescence Sensing of Human Cancer Cells That Overexpress NQO1
Early detection of cancer cells in a rapid and sensitive approach is one of the great challenges in modern clinical cancer care. This study has demonstrated the first example of a rapid, selective, and sensitive phosphorescence probe based on phosphorescence energy transfer (PET) for cancer-associat...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2015-11, Vol.7 (46), p.25961-25969 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Early detection of cancer cells in a rapid and sensitive approach is one of the great challenges in modern clinical cancer care. This study has demonstrated the first example of a rapid, selective, and sensitive phosphorescence probe based on phosphorescence energy transfer (PET) for cancer-associated human NAD(P)H:quinone oxidoreductase isozyme 1 (NQO1). An efficient room-temperature phosphorescence NQO1 probe was constructed by using Mn-doped ZnS quantum dots (Mn:ZnS QDs) as donors and trimethylquinone propionic acids as acceptors. Phosphorescence quenching of Mn:ZnS QDs from the Mn:ZnS QDs to a covalently bonded quinone was achieved through PET. Phosphorescence of Mn:ZnS QDs was turned on by the rapid reduction-initiated removal of the quinone quencher by NQO1. This probe shows low cellular toxicity and can rapidly distinguish between NQO1-expressing and -nonexpressing cancer cell lines through phosphorescence imaging. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.5b09244 |