Tetraoctylammonium Bromide Interlayer between NiLiO x and Perovskite for Light-Emitting Diodes

Physical vapor deposition is a favorable technique for fabricating light-emitting diodes (LEDs) due to its scalability and reproducibility. However, the performances of LEDs fabricated via this method are worse than those prepared via solution processing owing to the generation of high defect densit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2024-11, Vol.16 (46), p.64210-64221
Hauptverfasser: Vo, Van-Khoe, Bae, Sung-Hoon, Dang, Thi Huong Thao, Phung, Dinh Hoat, Kim, Juhan, Lee, Seungwon, Lee, Nayoon, Lim, Hyo-Jun, Kim, Ki-Hee, Lee, Joon-Hyung, Heo, Young-Woo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Physical vapor deposition is a favorable technique for fabricating light-emitting diodes (LEDs) due to its scalability and reproducibility. However, the performances of LEDs fabricated via this method are worse than those prepared via solution processing owing to the generation of high defect densities. In this study, we introduce a layer of tetraoctylammonium bromide (TOABr), an interfacial-modification compound containing four long octyl chains that are symmetrically arranged around an N atom, to reduce nonradiative recombination and trap densities in CsPbBr3. We examined the impacts of adding TOABr on perovskite thin films deposited on hole injection layers made of Li-doped NiO x and poly­(3,4-ethylenedioxythiophene)/polystyrenesulfonate. Our investigations reveal that TOABr addition slightly increases crystallinity, dramatically increases photoluminescence, and achieves the preferred orientation in the perovskite films. Additionally, the interfacial layer passivates defects and improves charge balance in the device, thereby enhancing performance. Consequently, perovskite LEDs with a TOABr layer exhibit a lower turn-on voltage of 3 V than their pristine counterparts, achieving a maximum luminance of 11,133 cd m–2 and an external quantum efficiency of 1.24%, whereas the pristine perovskite LEDs achieve an EQE of 0.015%. The approach proposed in this study can be used to fabricate efficient vacuum-thermal-evaporated perovskite LEDs.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.4c13287