Unraveling the Synergistic Role of Kinks in Zig-Zag Ag 2 Se Nanorod Arrays for High Room-Temperature zT and Improved Mechanical Properties: Experimental and First-Principles Studies

Flexible thermoelectric materials are usually fabricated by incorporating conducting or organic polymers; however, it remains a formidable task to achieve high thermoelectric properties comparable to those of their inorganic counterparts. Here, we present a high zT value of 1.29 ± 0.31 at room tempe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2024-11, Vol.16 (47), p.64702-64713
Hauptverfasser: Khan, Jamal Ahmad, Moulik, Ruman, Bhattacharya, Saswata, Singh, J P
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Flexible thermoelectric materials are usually fabricated by incorporating conducting or organic polymers; however, it remains a formidable task to achieve high thermoelectric properties comparable to those of their inorganic counterparts. Here, we present a high zT value of 1.29 ± 0.31 at room temperature in the hierarchical zig-zag Ag Se nanorod arrays fabricated using the glancing angle deposition (GLAD) technique followed by a facile selenization process. The high zT value at 300 K is ascribed to the ultrahigh power factor of 3101 ± 252 μW/m-K and the reduced thermal conductivity of 0.72 ± 0.01 W/mK. Based on computational and experimental evidence, we reveal that kinked Ag Se nanorod arrays consisting of rough interfaces modulate the lattice thermal conductivity up to 48.5% at room temperature. The modulation results from interchanging of phonon modes at kink points and enhanced scattering from a large number of rough interfaces. Further, benefiting from kinked hierarchy, a notable improvement in the mechanical performance is observed for zig-zag Ag Se nanorods which is confirmed by nanoindentation measurements. The synergic improvement in thermoelectric and mechanical performance not only unravels a paradigm to harness thermoelectric heat but also offers deeper insights into tuning the mechanical properties of inorganic thermoelectric materials.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.4c12282