Enhanced Energy Storage in PVDF-Based Nanocomposite Capacitors through (00 l )-Oriented BaTiO 3 Single-Crystal Platelets

Flexible nanocomposite dielectrics with inorganic nanofillers exhibit great potential for energy storage devices in advanced microelectronics applications. However, high loading of inorganic nanofillers in the matrix results in an inhomogeneous electric field distribution, thereby hindering the impr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2024-05, Vol.16 (21), p.27785-27793
Hauptverfasser: Li, Xiongjie, Wang, Yiping, Rao, Yu, Ma, Xinchi, Yang, Ying, Zhang, Jiyang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Flexible nanocomposite dielectrics with inorganic nanofillers exhibit great potential for energy storage devices in advanced microelectronics applications. However, high loading of inorganic nanofillers in the matrix results in an inhomogeneous electric field distribution, thereby hindering the improvement of the energy storage density ( ) of the dielectrics. Herein, we proposed a strategy that utilized (00 )-oriented barium titanate (BT) single-crystal platelets to fabricate trilayered nanocomposite dielectrics for energy storage applications. The trilayered nanocomposites consisted of two high-permittivity layers of (Ta O , Al O ) codoped TiO nanoparticles (Ta-Al@TiO nps) dispersed in a poly(vinylidene fluoride) (PVDF) matrix to facilitate large electric displacement and a middle layer of (00 )-oriented BT single-crystal platelets to provide high breakdown strength. Hence, the trilayered PVDF/Ta-Al@TiO nps/BT single-crystal platelet nanocomposite film attains an outstanding of 16.9 J cm at 370 kV mm , which is ∼625% higher than that of the single-layer PVDF/Ta-Al@TiO nps film. Finite element simulation further clarified that the successive inner layer of highly (00 )-oriented BT single-crystal platelets could effectively restrain the propagation of electrical treeing in trilayered nanocomposites. This research offers an effective approach for developing flexible dielectric capacitors with an excellent energy storage performance.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.4c04340