Crown-Assisted CsCu 2 I 3 Growth and Trap Passivation for Perovskite Light-Emitting Diodes

Copper (Cu)-based perovskites are promising for lead-free perovskite light-emitting diodes (PeLEDs). However, it remains a significant challenge to achieve high performance devices due to the nonradiative loss caused by the disordered crystallization and lack of passivation. Crown ethers are known t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2024-04
Hauptverfasser: Yang, Shuang, Tang, Zhenyu, Qu, Bo, Xiao, Lixin, Chen, Zhijian
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Copper (Cu)-based perovskites are promising for lead-free perovskite light-emitting diodes (PeLEDs). However, it remains a significant challenge to achieve high performance devices due to the nonradiative loss caused by the disordered crystallization and lack of passivation. Crown ethers are known to form host-guest complexes by the interaction between C-O-C groups and certain cations, and 18-crown-6 (18C6) with an appropriate complementary size can interact with Cs and Cu cations. Herein, we studied the interaction between CsCu I and two crowns with the same cyclic size, 18C6 and dibenzo-18-crown-6 (D18C6). Particularly, D18C6 can reduce the nonradiative recombination rate of CsCu I film by passivating the defects and optimizing the film morphology effectively. The room mean square (RMS) decreased from 5.06 to 2.95 nm, and the PLQY was promoted from 4.71% to 19.9%. Besides, D18C6 can also decrease the barrier of hole injection. The PeLEDs based on D18C6-modified CsCu I realized noticeable improvement with a maximum luminance and EQE of 583 cd/m and 0.662%, respectively.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.4c01048