Virus-Inspired Gold Nanorod-Mesoporous Silica Core–Shell Nanoparticles Integrated with tTF-EG3287 for Synergetic Tumor Photothermal Therapy and Selective Therapy for Vascular Thrombosis

Synergetic therapy includes the combination of two or more conventional therapeutic approaches and can be used for tumor treatment by combining the advantages and avoiding the drawbacks of each type of treatment. In the present study, truncated tissue factor (tTF)-EG3287 fusion protein-encapsulated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2021-09, Vol.13 (37), p.44013-44027
Hauptverfasser: Luo, Xian, Xie, Jun, Zhou, Zonglang, Ma, Sihan, Wang, Li, Li, Mengqi, Liu, Jiajing, Wang, Peiyuan, Li, Yang, Luo, Fanghong, Yan, Jianghua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Synergetic therapy includes the combination of two or more conventional therapeutic approaches and can be used for tumor treatment by combining the advantages and avoiding the drawbacks of each type of treatment. In the present study, truncated tissue factor (tTF)-EG3287 fusion protein-encapsulated gold nanorod (GNR)-virus-inspired mesoporous silica core–shell nanoparticles (vinyl hybrid silica nanoparticles; VSNP) (GNR@VSNP-tTF-EG3287) were synthesized to achieve synergetic therapy by utilizing selective vascular thrombosis therapy (SVTT) and photothermal therapy (PTT). By integrating the targeted coagulation activity of tTF-EG3287 and the high tumor ablation effect of GNR@VSNP, local hyperthermia could induce a high percentage of apoptosis of vascular endothelial cells by using near-infrared light. This provided additional phospholipid sites for tTF-EG3287 and enhanced its procoagulant activity in vitro. In addition, the nanoparticles, which had unique topological viral structures, exhibited superior cellular uptake properties leading to significant antitumor efficacy. The in vivo antitumor results further demonstrated an interaction between SVTT and PTT, whereas the synergetic therapy (SVTT and PTT) achieved an enhanced effect, which was superior to the respective treatment efficacy of each modality or the additive effect of their individual efficacies. In summary, the synthesized GNR@VSNP-tTF-EG3287 exerted synergetic effects and enhanced the antitumor efficiency by avoiding multiple injections and suboptimal administration. These effects simultaneously affected both tumor blood supply and cancer cell proliferation. The data suggested that the integration of SVTT induced by tTF-EG3287 and PTT could provide potential strategies for synergetic tumor therapy.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.1c11947