Self-Assembled Au Nanoparticle Arrays for Precise Metabolic Assay of Cerebrospinal Fluid
Precise and rapid monitoring of metabolites in biofluids is a desirable but unmet goal for disease diagnosis and management. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) exhibits advantages in metabolite analysis. However, the low accuracy in quantification of the techniq...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2021-02, Vol.13 (4), p.4886-4893 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4893 |
---|---|
container_issue | 4 |
container_start_page | 4886 |
container_title | ACS applied materials & interfaces |
container_volume | 13 |
creator | Wang, Yuning Zhang, Kun Tian, Tongtong Shan, Weilong Qiao, Liang Liu, Baohong |
description | Precise and rapid monitoring of metabolites in biofluids is a desirable but unmet goal for disease diagnosis and management. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) exhibits advantages in metabolite analysis. However, the low accuracy in quantification of the technique limits its transformation to clinical usage. We report herein the use of Au nanoparticle arrays self-assembled at liquid–liquid interfaces for mass spectrometry (MS)-based quantitative biofluids metabolic profiling. The two-dimensional arrays feature uniformly and closely packed Au nanoparticles with 3 nm interparticle gaps. The experimental study and theoretical simulation show that the arrays exhibit high photothermal conversion and heat confinement effects, which enhance the laser desorption/ionization efficacy. With the nanoscale roughness, the AuNP arrays as laser desorption/ionization substrates can interrupt the coffee-ring effect during droplet evaporation. Therefore, high reproducibility (RSD |
doi_str_mv | 10.1021/acsami.0c20944 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsami_0c20944</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c474143259</sourcerecordid><originalsourceid>FETCH-LOGICAL-a396t-343ae1239fdc614cbe4091efaad031faae6f022a088223027e2cbf6c475414653</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRbK1ePcqehdT9SpocQ7Eq1A9QwVuYbGZhy6YJu82h_74rqb15eufwPjPMQ8gtZ3POBH8AHaC1c6YFK5Q6I1MeI8lFKs5Ps1ITchXChrFMCpZekomUKlO55FPy84nOJGUI2NYOG1oO9A22XQ9-Z7VDWnoP-0BN5-mHR20D0lfcQd05q2nEYE87Q5fosfZd6O0WHF25wTbX5MKAC3hzzBn5Xj1-LZ-T9fvTy7JcJyCLbJdIJQG5kIVpdMaVrlGxgqMBaJjkMTAzTAhgeS6EZGKBQtcm02qRKq6yVM7IfNyr4_3g0VS9ty34fcVZ9auoGhVVR0URuBuBfqhbbE71PyexcD8WIlhtusHHn8J_2w7pFXEW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Self-Assembled Au Nanoparticle Arrays for Precise Metabolic Assay of Cerebrospinal Fluid</title><source>MEDLINE</source><source>ACS Publications</source><creator>Wang, Yuning ; Zhang, Kun ; Tian, Tongtong ; Shan, Weilong ; Qiao, Liang ; Liu, Baohong</creator><creatorcontrib>Wang, Yuning ; Zhang, Kun ; Tian, Tongtong ; Shan, Weilong ; Qiao, Liang ; Liu, Baohong</creatorcontrib><description>Precise and rapid monitoring of metabolites in biofluids is a desirable but unmet goal for disease diagnosis and management. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) exhibits advantages in metabolite analysis. However, the low accuracy in quantification of the technique limits its transformation to clinical usage. We report herein the use of Au nanoparticle arrays self-assembled at liquid–liquid interfaces for mass spectrometry (MS)-based quantitative biofluids metabolic profiling. The two-dimensional arrays feature uniformly and closely packed Au nanoparticles with 3 nm interparticle gaps. The experimental study and theoretical simulation show that the arrays exhibit high photothermal conversion and heat confinement effects, which enhance the laser desorption/ionization efficacy. With the nanoscale roughness, the AuNP arrays as laser desorption/ionization substrates can interrupt the coffee-ring effect during droplet evaporation. Therefore, high reproducibility (RSD <5%) is obtained, enabling accurate quantitative analysis of diverse metabolites from 1 μL of biofluids in seconds. By quantifying glucose in the cerebrospinal fluid (CSF), it allows us to identify patients with brain infection and rapidly evaluate the clinical therapy response. Consequently, the method shows potential in advanced metabolite analysis and biomedical diagnostics.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.0c20944</identifier><identifier>PMID: 33464831</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Biological and Medical Applications of Materials and Interfaces ; Equipment Design ; Glucose - cerebrospinal fluid ; Gold - chemistry ; Humans ; Metabolome ; Metal Nanoparticles - chemistry ; Metal Nanoparticles - ultrastructure ; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization - instrumentation</subject><ispartof>ACS applied materials & interfaces, 2021-02, Vol.13 (4), p.4886-4893</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a396t-343ae1239fdc614cbe4091efaad031faae6f022a088223027e2cbf6c475414653</citedby><cites>FETCH-LOGICAL-a396t-343ae1239fdc614cbe4091efaad031faae6f022a088223027e2cbf6c475414653</cites><orcidid>0000-0002-0660-8610 ; 0000-0002-6233-8459</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.0c20944$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.0c20944$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,778,782,2754,27059,27907,27908,56721,56771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33464831$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Yuning</creatorcontrib><creatorcontrib>Zhang, Kun</creatorcontrib><creatorcontrib>Tian, Tongtong</creatorcontrib><creatorcontrib>Shan, Weilong</creatorcontrib><creatorcontrib>Qiao, Liang</creatorcontrib><creatorcontrib>Liu, Baohong</creatorcontrib><title>Self-Assembled Au Nanoparticle Arrays for Precise Metabolic Assay of Cerebrospinal Fluid</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Precise and rapid monitoring of metabolites in biofluids is a desirable but unmet goal for disease diagnosis and management. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) exhibits advantages in metabolite analysis. However, the low accuracy in quantification of the technique limits its transformation to clinical usage. We report herein the use of Au nanoparticle arrays self-assembled at liquid–liquid interfaces for mass spectrometry (MS)-based quantitative biofluids metabolic profiling. The two-dimensional arrays feature uniformly and closely packed Au nanoparticles with 3 nm interparticle gaps. The experimental study and theoretical simulation show that the arrays exhibit high photothermal conversion and heat confinement effects, which enhance the laser desorption/ionization efficacy. With the nanoscale roughness, the AuNP arrays as laser desorption/ionization substrates can interrupt the coffee-ring effect during droplet evaporation. Therefore, high reproducibility (RSD <5%) is obtained, enabling accurate quantitative analysis of diverse metabolites from 1 μL of biofluids in seconds. By quantifying glucose in the cerebrospinal fluid (CSF), it allows us to identify patients with brain infection and rapidly evaluate the clinical therapy response. Consequently, the method shows potential in advanced metabolite analysis and biomedical diagnostics.</description><subject>Biological and Medical Applications of Materials and Interfaces</subject><subject>Equipment Design</subject><subject>Glucose - cerebrospinal fluid</subject><subject>Gold - chemistry</subject><subject>Humans</subject><subject>Metabolome</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Metal Nanoparticles - ultrastructure</subject><subject>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization - instrumentation</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kE1Lw0AQhhdRbK1ePcqehdT9SpocQ7Eq1A9QwVuYbGZhy6YJu82h_74rqb15eufwPjPMQ8gtZ3POBH8AHaC1c6YFK5Q6I1MeI8lFKs5Ps1ITchXChrFMCpZekomUKlO55FPy84nOJGUI2NYOG1oO9A22XQ9-Z7VDWnoP-0BN5-mHR20D0lfcQd05q2nEYE87Q5fosfZd6O0WHF25wTbX5MKAC3hzzBn5Xj1-LZ-T9fvTy7JcJyCLbJdIJQG5kIVpdMaVrlGxgqMBaJjkMTAzTAhgeS6EZGKBQtcm02qRKq6yVM7IfNyr4_3g0VS9ty34fcVZ9auoGhVVR0URuBuBfqhbbE71PyexcD8WIlhtusHHn8J_2w7pFXEW</recordid><startdate>20210203</startdate><enddate>20210203</enddate><creator>Wang, Yuning</creator><creator>Zhang, Kun</creator><creator>Tian, Tongtong</creator><creator>Shan, Weilong</creator><creator>Qiao, Liang</creator><creator>Liu, Baohong</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0660-8610</orcidid><orcidid>https://orcid.org/0000-0002-6233-8459</orcidid></search><sort><creationdate>20210203</creationdate><title>Self-Assembled Au Nanoparticle Arrays for Precise Metabolic Assay of Cerebrospinal Fluid</title><author>Wang, Yuning ; Zhang, Kun ; Tian, Tongtong ; Shan, Weilong ; Qiao, Liang ; Liu, Baohong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a396t-343ae1239fdc614cbe4091efaad031faae6f022a088223027e2cbf6c475414653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biological and Medical Applications of Materials and Interfaces</topic><topic>Equipment Design</topic><topic>Glucose - cerebrospinal fluid</topic><topic>Gold - chemistry</topic><topic>Humans</topic><topic>Metabolome</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Metal Nanoparticles - ultrastructure</topic><topic>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization - instrumentation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yuning</creatorcontrib><creatorcontrib>Zhang, Kun</creatorcontrib><creatorcontrib>Tian, Tongtong</creatorcontrib><creatorcontrib>Shan, Weilong</creatorcontrib><creatorcontrib>Qiao, Liang</creatorcontrib><creatorcontrib>Liu, Baohong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yuning</au><au>Zhang, Kun</au><au>Tian, Tongtong</au><au>Shan, Weilong</au><au>Qiao, Liang</au><au>Liu, Baohong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-Assembled Au Nanoparticle Arrays for Precise Metabolic Assay of Cerebrospinal Fluid</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2021-02-03</date><risdate>2021</risdate><volume>13</volume><issue>4</issue><spage>4886</spage><epage>4893</epage><pages>4886-4893</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Precise and rapid monitoring of metabolites in biofluids is a desirable but unmet goal for disease diagnosis and management. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) exhibits advantages in metabolite analysis. However, the low accuracy in quantification of the technique limits its transformation to clinical usage. We report herein the use of Au nanoparticle arrays self-assembled at liquid–liquid interfaces for mass spectrometry (MS)-based quantitative biofluids metabolic profiling. The two-dimensional arrays feature uniformly and closely packed Au nanoparticles with 3 nm interparticle gaps. The experimental study and theoretical simulation show that the arrays exhibit high photothermal conversion and heat confinement effects, which enhance the laser desorption/ionization efficacy. With the nanoscale roughness, the AuNP arrays as laser desorption/ionization substrates can interrupt the coffee-ring effect during droplet evaporation. Therefore, high reproducibility (RSD <5%) is obtained, enabling accurate quantitative analysis of diverse metabolites from 1 μL of biofluids in seconds. By quantifying glucose in the cerebrospinal fluid (CSF), it allows us to identify patients with brain infection and rapidly evaluate the clinical therapy response. Consequently, the method shows potential in advanced metabolite analysis and biomedical diagnostics.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33464831</pmid><doi>10.1021/acsami.0c20944</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0660-8610</orcidid><orcidid>https://orcid.org/0000-0002-6233-8459</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2021-02, Vol.13 (4), p.4886-4893 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acsami_0c20944 |
source | MEDLINE; ACS Publications |
subjects | Biological and Medical Applications of Materials and Interfaces Equipment Design Glucose - cerebrospinal fluid Gold - chemistry Humans Metabolome Metal Nanoparticles - chemistry Metal Nanoparticles - ultrastructure Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization - instrumentation |
title | Self-Assembled Au Nanoparticle Arrays for Precise Metabolic Assay of Cerebrospinal Fluid |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T09%3A35%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-Assembled%20Au%20Nanoparticle%20Arrays%20for%20Precise%20Metabolic%20Assay%20of%20Cerebrospinal%20Fluid&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Wang,%20Yuning&rft.date=2021-02-03&rft.volume=13&rft.issue=4&rft.spage=4886&rft.epage=4893&rft.pages=4886-4893&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.0c20944&rft_dat=%3Cacs_cross%3Ec474143259%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/33464831&rfr_iscdi=true |