Self-Assembled Au Nanoparticle Arrays for Precise Metabolic Assay of Cerebrospinal Fluid

Precise and rapid monitoring of metabolites in biofluids is a desirable but unmet goal for disease diagnosis and management. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) exhibits advantages in metabolite analysis. However, the low accuracy in quantification of the techniq...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2021-02, Vol.13 (4), p.4886-4893
Hauptverfasser: Wang, Yuning, Zhang, Kun, Tian, Tongtong, Shan, Weilong, Qiao, Liang, Liu, Baohong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4893
container_issue 4
container_start_page 4886
container_title ACS applied materials & interfaces
container_volume 13
creator Wang, Yuning
Zhang, Kun
Tian, Tongtong
Shan, Weilong
Qiao, Liang
Liu, Baohong
description Precise and rapid monitoring of metabolites in biofluids is a desirable but unmet goal for disease diagnosis and management. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) exhibits advantages in metabolite analysis. However, the low accuracy in quantification of the technique limits its transformation to clinical usage. We report herein the use of Au nanoparticle arrays self-assembled at liquid–liquid interfaces for mass spectrometry (MS)-based quantitative biofluids metabolic profiling. The two-dimensional arrays feature uniformly and closely packed Au nanoparticles with 3 nm interparticle gaps. The experimental study and theoretical simulation show that the arrays exhibit high photothermal conversion and heat confinement effects, which enhance the laser desorption/ionization efficacy. With the nanoscale roughness, the AuNP arrays as laser desorption/ionization substrates can interrupt the coffee-ring effect during droplet evaporation. Therefore, high reproducibility (RSD
doi_str_mv 10.1021/acsami.0c20944
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsami_0c20944</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c474143259</sourcerecordid><originalsourceid>FETCH-LOGICAL-a396t-343ae1239fdc614cbe4091efaad031faae6f022a088223027e2cbf6c475414653</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRbK1ePcqehdT9SpocQ7Eq1A9QwVuYbGZhy6YJu82h_74rqb15eufwPjPMQ8gtZ3POBH8AHaC1c6YFK5Q6I1MeI8lFKs5Ps1ITchXChrFMCpZekomUKlO55FPy84nOJGUI2NYOG1oO9A22XQ9-Z7VDWnoP-0BN5-mHR20D0lfcQd05q2nEYE87Q5fosfZd6O0WHF25wTbX5MKAC3hzzBn5Xj1-LZ-T9fvTy7JcJyCLbJdIJQG5kIVpdMaVrlGxgqMBaJjkMTAzTAhgeS6EZGKBQtcm02qRKq6yVM7IfNyr4_3g0VS9ty34fcVZ9auoGhVVR0URuBuBfqhbbE71PyexcD8WIlhtusHHn8J_2w7pFXEW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Self-Assembled Au Nanoparticle Arrays for Precise Metabolic Assay of Cerebrospinal Fluid</title><source>MEDLINE</source><source>ACS Publications</source><creator>Wang, Yuning ; Zhang, Kun ; Tian, Tongtong ; Shan, Weilong ; Qiao, Liang ; Liu, Baohong</creator><creatorcontrib>Wang, Yuning ; Zhang, Kun ; Tian, Tongtong ; Shan, Weilong ; Qiao, Liang ; Liu, Baohong</creatorcontrib><description>Precise and rapid monitoring of metabolites in biofluids is a desirable but unmet goal for disease diagnosis and management. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) exhibits advantages in metabolite analysis. However, the low accuracy in quantification of the technique limits its transformation to clinical usage. We report herein the use of Au nanoparticle arrays self-assembled at liquid–liquid interfaces for mass spectrometry (MS)-based quantitative biofluids metabolic profiling. The two-dimensional arrays feature uniformly and closely packed Au nanoparticles with 3 nm interparticle gaps. The experimental study and theoretical simulation show that the arrays exhibit high photothermal conversion and heat confinement effects, which enhance the laser desorption/ionization efficacy. With the nanoscale roughness, the AuNP arrays as laser desorption/ionization substrates can interrupt the coffee-ring effect during droplet evaporation. Therefore, high reproducibility (RSD &lt;5%) is obtained, enabling accurate quantitative analysis of diverse metabolites from 1 μL of biofluids in seconds. By quantifying glucose in the cerebrospinal fluid (CSF), it allows us to identify patients with brain infection and rapidly evaluate the clinical therapy response. Consequently, the method shows potential in advanced metabolite analysis and biomedical diagnostics.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.0c20944</identifier><identifier>PMID: 33464831</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Biological and Medical Applications of Materials and Interfaces ; Equipment Design ; Glucose - cerebrospinal fluid ; Gold - chemistry ; Humans ; Metabolome ; Metal Nanoparticles - chemistry ; Metal Nanoparticles - ultrastructure ; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization - instrumentation</subject><ispartof>ACS applied materials &amp; interfaces, 2021-02, Vol.13 (4), p.4886-4893</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a396t-343ae1239fdc614cbe4091efaad031faae6f022a088223027e2cbf6c475414653</citedby><cites>FETCH-LOGICAL-a396t-343ae1239fdc614cbe4091efaad031faae6f022a088223027e2cbf6c475414653</cites><orcidid>0000-0002-0660-8610 ; 0000-0002-6233-8459</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.0c20944$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.0c20944$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,778,782,2754,27059,27907,27908,56721,56771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33464831$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Yuning</creatorcontrib><creatorcontrib>Zhang, Kun</creatorcontrib><creatorcontrib>Tian, Tongtong</creatorcontrib><creatorcontrib>Shan, Weilong</creatorcontrib><creatorcontrib>Qiao, Liang</creatorcontrib><creatorcontrib>Liu, Baohong</creatorcontrib><title>Self-Assembled Au Nanoparticle Arrays for Precise Metabolic Assay of Cerebrospinal Fluid</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Precise and rapid monitoring of metabolites in biofluids is a desirable but unmet goal for disease diagnosis and management. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) exhibits advantages in metabolite analysis. However, the low accuracy in quantification of the technique limits its transformation to clinical usage. We report herein the use of Au nanoparticle arrays self-assembled at liquid–liquid interfaces for mass spectrometry (MS)-based quantitative biofluids metabolic profiling. The two-dimensional arrays feature uniformly and closely packed Au nanoparticles with 3 nm interparticle gaps. The experimental study and theoretical simulation show that the arrays exhibit high photothermal conversion and heat confinement effects, which enhance the laser desorption/ionization efficacy. With the nanoscale roughness, the AuNP arrays as laser desorption/ionization substrates can interrupt the coffee-ring effect during droplet evaporation. Therefore, high reproducibility (RSD &lt;5%) is obtained, enabling accurate quantitative analysis of diverse metabolites from 1 μL of biofluids in seconds. By quantifying glucose in the cerebrospinal fluid (CSF), it allows us to identify patients with brain infection and rapidly evaluate the clinical therapy response. Consequently, the method shows potential in advanced metabolite analysis and biomedical diagnostics.</description><subject>Biological and Medical Applications of Materials and Interfaces</subject><subject>Equipment Design</subject><subject>Glucose - cerebrospinal fluid</subject><subject>Gold - chemistry</subject><subject>Humans</subject><subject>Metabolome</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Metal Nanoparticles - ultrastructure</subject><subject>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization - instrumentation</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kE1Lw0AQhhdRbK1ePcqehdT9SpocQ7Eq1A9QwVuYbGZhy6YJu82h_74rqb15eufwPjPMQ8gtZ3POBH8AHaC1c6YFK5Q6I1MeI8lFKs5Ps1ITchXChrFMCpZekomUKlO55FPy84nOJGUI2NYOG1oO9A22XQ9-Z7VDWnoP-0BN5-mHR20D0lfcQd05q2nEYE87Q5fosfZd6O0WHF25wTbX5MKAC3hzzBn5Xj1-LZ-T9fvTy7JcJyCLbJdIJQG5kIVpdMaVrlGxgqMBaJjkMTAzTAhgeS6EZGKBQtcm02qRKq6yVM7IfNyr4_3g0VS9ty34fcVZ9auoGhVVR0URuBuBfqhbbE71PyexcD8WIlhtusHHn8J_2w7pFXEW</recordid><startdate>20210203</startdate><enddate>20210203</enddate><creator>Wang, Yuning</creator><creator>Zhang, Kun</creator><creator>Tian, Tongtong</creator><creator>Shan, Weilong</creator><creator>Qiao, Liang</creator><creator>Liu, Baohong</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0660-8610</orcidid><orcidid>https://orcid.org/0000-0002-6233-8459</orcidid></search><sort><creationdate>20210203</creationdate><title>Self-Assembled Au Nanoparticle Arrays for Precise Metabolic Assay of Cerebrospinal Fluid</title><author>Wang, Yuning ; Zhang, Kun ; Tian, Tongtong ; Shan, Weilong ; Qiao, Liang ; Liu, Baohong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a396t-343ae1239fdc614cbe4091efaad031faae6f022a088223027e2cbf6c475414653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biological and Medical Applications of Materials and Interfaces</topic><topic>Equipment Design</topic><topic>Glucose - cerebrospinal fluid</topic><topic>Gold - chemistry</topic><topic>Humans</topic><topic>Metabolome</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Metal Nanoparticles - ultrastructure</topic><topic>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization - instrumentation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yuning</creatorcontrib><creatorcontrib>Zhang, Kun</creatorcontrib><creatorcontrib>Tian, Tongtong</creatorcontrib><creatorcontrib>Shan, Weilong</creatorcontrib><creatorcontrib>Qiao, Liang</creatorcontrib><creatorcontrib>Liu, Baohong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yuning</au><au>Zhang, Kun</au><au>Tian, Tongtong</au><au>Shan, Weilong</au><au>Qiao, Liang</au><au>Liu, Baohong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-Assembled Au Nanoparticle Arrays for Precise Metabolic Assay of Cerebrospinal Fluid</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2021-02-03</date><risdate>2021</risdate><volume>13</volume><issue>4</issue><spage>4886</spage><epage>4893</epage><pages>4886-4893</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Precise and rapid monitoring of metabolites in biofluids is a desirable but unmet goal for disease diagnosis and management. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) exhibits advantages in metabolite analysis. However, the low accuracy in quantification of the technique limits its transformation to clinical usage. We report herein the use of Au nanoparticle arrays self-assembled at liquid–liquid interfaces for mass spectrometry (MS)-based quantitative biofluids metabolic profiling. The two-dimensional arrays feature uniformly and closely packed Au nanoparticles with 3 nm interparticle gaps. The experimental study and theoretical simulation show that the arrays exhibit high photothermal conversion and heat confinement effects, which enhance the laser desorption/ionization efficacy. With the nanoscale roughness, the AuNP arrays as laser desorption/ionization substrates can interrupt the coffee-ring effect during droplet evaporation. Therefore, high reproducibility (RSD &lt;5%) is obtained, enabling accurate quantitative analysis of diverse metabolites from 1 μL of biofluids in seconds. By quantifying glucose in the cerebrospinal fluid (CSF), it allows us to identify patients with brain infection and rapidly evaluate the clinical therapy response. Consequently, the method shows potential in advanced metabolite analysis and biomedical diagnostics.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33464831</pmid><doi>10.1021/acsami.0c20944</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0660-8610</orcidid><orcidid>https://orcid.org/0000-0002-6233-8459</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2021-02, Vol.13 (4), p.4886-4893
issn 1944-8244
1944-8252
language eng
recordid cdi_crossref_primary_10_1021_acsami_0c20944
source MEDLINE; ACS Publications
subjects Biological and Medical Applications of Materials and Interfaces
Equipment Design
Glucose - cerebrospinal fluid
Gold - chemistry
Humans
Metabolome
Metal Nanoparticles - chemistry
Metal Nanoparticles - ultrastructure
Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization - instrumentation
title Self-Assembled Au Nanoparticle Arrays for Precise Metabolic Assay of Cerebrospinal Fluid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T09%3A35%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-Assembled%20Au%20Nanoparticle%20Arrays%20for%20Precise%20Metabolic%20Assay%20of%20Cerebrospinal%20Fluid&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Wang,%20Yuning&rft.date=2021-02-03&rft.volume=13&rft.issue=4&rft.spage=4886&rft.epage=4893&rft.pages=4886-4893&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.0c20944&rft_dat=%3Cacs_cross%3Ec474143259%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/33464831&rfr_iscdi=true