Self-Assembled Au Nanoparticle Arrays for Precise Metabolic Assay of Cerebrospinal Fluid
Precise and rapid monitoring of metabolites in biofluids is a desirable but unmet goal for disease diagnosis and management. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) exhibits advantages in metabolite analysis. However, the low accuracy in quantification of the techniq...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2021-02, Vol.13 (4), p.4886-4893 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Precise and rapid monitoring of metabolites in biofluids is a desirable but unmet goal for disease diagnosis and management. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) exhibits advantages in metabolite analysis. However, the low accuracy in quantification of the technique limits its transformation to clinical usage. We report herein the use of Au nanoparticle arrays self-assembled at liquid–liquid interfaces for mass spectrometry (MS)-based quantitative biofluids metabolic profiling. The two-dimensional arrays feature uniformly and closely packed Au nanoparticles with 3 nm interparticle gaps. The experimental study and theoretical simulation show that the arrays exhibit high photothermal conversion and heat confinement effects, which enhance the laser desorption/ionization efficacy. With the nanoscale roughness, the AuNP arrays as laser desorption/ionization substrates can interrupt the coffee-ring effect during droplet evaporation. Therefore, high reproducibility (RSD |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.0c20944 |