Insight into the Coprecipitation-Controlled Crystallization Reaction for Preparing Lithium-Layered Oxide Cathodes
The nucleation and growth of spherical Ni0.6Co0.2Mn0.2(OH)(2) agglomerates using the hydroxide coprecipitation (HCP) method in the presence of ammonia is investigated through chemical equilibrium calculations and experiments. In the nucleation stage, the transition metal ions in the salt solution gr...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2021-01, Vol.13 (1), p.717-726 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 726 |
---|---|
container_issue | 1 |
container_start_page | 717 |
container_title | ACS applied materials & interfaces |
container_volume | 13 |
creator | Shen, Yabin Wu, Yingqiang Xue, Hongjin Wang, Shaohua Yin, Dongming Wang, Limin Cheng, Yong |
description | The nucleation and growth of spherical Ni0.6Co0.2Mn0.2(OH)(2) agglomerates using the hydroxide coprecipitation (HCP) method in the presence of ammonia is investigated through chemical equilibrium calculations and experiments. In the nucleation stage, the transition metal ions in the salt solution gradually complete the nucleation reaction in the diffusion process from pH 5.4 to 11 after dropping into the continuously stirred tank reactor, and then Me(NH3)(n)(2+) and Me(OH)(2)(s) (Me: Ni, Co, and Mn) reach a dynamic precipitation dissolution equilibrium. In the growth stage, the concentration ratio of Me(NH3)(n)(2+) and OH- (complexation and precipitation, R-c/p) in the solution has an important influence on obtaining high-quality materials, which is further confirmed using the first principles density functional theory calculations on surface energy and adsorption energy. Then, the HCP reaction could be divided into three parts through experiments: incomplete precipitation area (R-c(/)p > 10.1); time-dependent area (R-c/p, = 0.1-10.1); and hard-to-control area (R-c(/)p |
doi_str_mv | 10.1021/acsami.0c19493 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsami_0c19493</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2475088338</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-2d4846d854202ecebdbbbaa43ccd3203190f2805b10634978e14a278da91577b3</originalsourceid><addsrcrecordid>eNqNkUtLxDAUhYMovrcupUtBOubVabqU4gsGFNF1SZPbmUjb1CRFx19v5uGsXd0D-c4h91yELgieEEzJjVRedmaCFSl4wfbQcZw8FTSj-zvN-RE68f4D4ymjODtER4wxURRCHKPPp96b-SIkpg82CQtISjs4UGYwQQZj-7S0fXC2bUEnpVv6INvW_KyfkleQai0a65IXB4N0pp8nMxMWZuzSmVyCi7bnb6NjrgwLq8GfoYNGth7Ot_MUvd_fvZWP6ez54am8naWKFllIqeaCT7XIOMUUFNS6rmspOVNKxy0YKXBDBc5qErfiRS6AcElzoWVBsjyv2Sm62uQOzn6O4EPVGa-gbWUPdvQV5XmGhYhNRHSyQZWz3jtoqsGZTrplRXC1qrna1Fxta46Gy232WHegd_hfrxEQG-ALatt4ZaBXsMNwvASJ_57ilcrLbdWlHfsQrdf_t7Jf9kecXQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2475088338</pqid></control><display><type>article</type><title>Insight into the Coprecipitation-Controlled Crystallization Reaction for Preparing Lithium-Layered Oxide Cathodes</title><source>ACS Publications</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Shen, Yabin ; Wu, Yingqiang ; Xue, Hongjin ; Wang, Shaohua ; Yin, Dongming ; Wang, Limin ; Cheng, Yong</creator><creatorcontrib>Shen, Yabin ; Wu, Yingqiang ; Xue, Hongjin ; Wang, Shaohua ; Yin, Dongming ; Wang, Limin ; Cheng, Yong</creatorcontrib><description>The nucleation and growth of spherical Ni0.6Co0.2Mn0.2(OH)(2) agglomerates using the hydroxide coprecipitation (HCP) method in the presence of ammonia is investigated through chemical equilibrium calculations and experiments. In the nucleation stage, the transition metal ions in the salt solution gradually complete the nucleation reaction in the diffusion process from pH 5.4 to 11 after dropping into the continuously stirred tank reactor, and then Me(NH3)(n)(2+) and Me(OH)(2)(s) (Me: Ni, Co, and Mn) reach a dynamic precipitation dissolution equilibrium. In the growth stage, the concentration ratio of Me(NH3)(n)(2+) and OH- (complexation and precipitation, R-c/p) in the solution has an important influence on obtaining high-quality materials, which is further confirmed using the first principles density functional theory calculations on surface energy and adsorption energy. Then, the HCP reaction could be divided into three parts through experiments: incomplete precipitation area (R-c(/)p > 10.1); time-dependent area (R-c/p, = 0.1-10.1); and hard-to-control area (R-c(/)p <0.1). According to the optimal ratio (R-c/p = 3.4), a prediction formula for the optimal synthesis conditions of the materials is proposed (y = 0.7731 x ln(x + 0.0312) + 11.6708, the optimal pH value (y) corresponds to different ammonia concentrations (x)). The results obtained for the growth reaction mechanism and the prediction scheme would help the modification research of the materials and obtain the desired lithium-layered transition metal oxide cathode material with excellent performance in the shortest time.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.0c19493</identifier><identifier>PMID: 33389988</identifier><language>eng</language><publisher>WASHINGTON: Amer Chemical Soc</publisher><subject>Materials Science ; Materials Science, Multidisciplinary ; Nanoscience & Nanotechnology ; Science & Technology ; Science & Technology - Other Topics ; Technology</subject><ispartof>ACS applied materials & interfaces, 2021-01, Vol.13 (1), p.717-726</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>40</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000611066000067</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c295t-2d4846d854202ecebdbbbaa43ccd3203190f2805b10634978e14a278da91577b3</citedby><cites>FETCH-LOGICAL-c295t-2d4846d854202ecebdbbbaa43ccd3203190f2805b10634978e14a278da91577b3</cites><orcidid>0000-0001-9618-9239</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,2766,27929,27930,39263</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33389988$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shen, Yabin</creatorcontrib><creatorcontrib>Wu, Yingqiang</creatorcontrib><creatorcontrib>Xue, Hongjin</creatorcontrib><creatorcontrib>Wang, Shaohua</creatorcontrib><creatorcontrib>Yin, Dongming</creatorcontrib><creatorcontrib>Wang, Limin</creatorcontrib><creatorcontrib>Cheng, Yong</creatorcontrib><title>Insight into the Coprecipitation-Controlled Crystallization Reaction for Preparing Lithium-Layered Oxide Cathodes</title><title>ACS applied materials & interfaces</title><addtitle>ACS APPL MATER INTER</addtitle><addtitle>ACS Appl Mater Interfaces</addtitle><description>The nucleation and growth of spherical Ni0.6Co0.2Mn0.2(OH)(2) agglomerates using the hydroxide coprecipitation (HCP) method in the presence of ammonia is investigated through chemical equilibrium calculations and experiments. In the nucleation stage, the transition metal ions in the salt solution gradually complete the nucleation reaction in the diffusion process from pH 5.4 to 11 after dropping into the continuously stirred tank reactor, and then Me(NH3)(n)(2+) and Me(OH)(2)(s) (Me: Ni, Co, and Mn) reach a dynamic precipitation dissolution equilibrium. In the growth stage, the concentration ratio of Me(NH3)(n)(2+) and OH- (complexation and precipitation, R-c/p) in the solution has an important influence on obtaining high-quality materials, which is further confirmed using the first principles density functional theory calculations on surface energy and adsorption energy. Then, the HCP reaction could be divided into three parts through experiments: incomplete precipitation area (R-c(/)p > 10.1); time-dependent area (R-c/p, = 0.1-10.1); and hard-to-control area (R-c(/)p <0.1). According to the optimal ratio (R-c/p = 3.4), a prediction formula for the optimal synthesis conditions of the materials is proposed (y = 0.7731 x ln(x + 0.0312) + 11.6708, the optimal pH value (y) corresponds to different ammonia concentrations (x)). The results obtained for the growth reaction mechanism and the prediction scheme would help the modification research of the materials and obtain the desired lithium-layered transition metal oxide cathode material with excellent performance in the shortest time.</description><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Nanoscience & Nanotechnology</subject><subject>Science & Technology</subject><subject>Science & Technology - Other Topics</subject><subject>Technology</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkUtLxDAUhYMovrcupUtBOubVabqU4gsGFNF1SZPbmUjb1CRFx19v5uGsXd0D-c4h91yELgieEEzJjVRedmaCFSl4wfbQcZw8FTSj-zvN-RE68f4D4ymjODtER4wxURRCHKPPp96b-SIkpg82CQtISjs4UGYwQQZj-7S0fXC2bUEnpVv6INvW_KyfkleQai0a65IXB4N0pp8nMxMWZuzSmVyCi7bnb6NjrgwLq8GfoYNGth7Ot_MUvd_fvZWP6ez54am8naWKFllIqeaCT7XIOMUUFNS6rmspOVNKxy0YKXBDBc5qErfiRS6AcElzoWVBsjyv2Sm62uQOzn6O4EPVGa-gbWUPdvQV5XmGhYhNRHSyQZWz3jtoqsGZTrplRXC1qrna1Fxta46Gy232WHegd_hfrxEQG-ALatt4ZaBXsMNwvASJ_57ilcrLbdWlHfsQrdf_t7Jf9kecXQ</recordid><startdate>20210113</startdate><enddate>20210113</enddate><creator>Shen, Yabin</creator><creator>Wu, Yingqiang</creator><creator>Xue, Hongjin</creator><creator>Wang, Shaohua</creator><creator>Yin, Dongming</creator><creator>Wang, Limin</creator><creator>Cheng, Yong</creator><general>Amer Chemical Soc</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9618-9239</orcidid></search><sort><creationdate>20210113</creationdate><title>Insight into the Coprecipitation-Controlled Crystallization Reaction for Preparing Lithium-Layered Oxide Cathodes</title><author>Shen, Yabin ; Wu, Yingqiang ; Xue, Hongjin ; Wang, Shaohua ; Yin, Dongming ; Wang, Limin ; Cheng, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-2d4846d854202ecebdbbbaa43ccd3203190f2805b10634978e14a278da91577b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Nanoscience & Nanotechnology</topic><topic>Science & Technology</topic><topic>Science & Technology - Other Topics</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Yabin</creatorcontrib><creatorcontrib>Wu, Yingqiang</creatorcontrib><creatorcontrib>Xue, Hongjin</creatorcontrib><creatorcontrib>Wang, Shaohua</creatorcontrib><creatorcontrib>Yin, Dongming</creatorcontrib><creatorcontrib>Wang, Limin</creatorcontrib><creatorcontrib>Cheng, Yong</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Yabin</au><au>Wu, Yingqiang</au><au>Xue, Hongjin</au><au>Wang, Shaohua</au><au>Yin, Dongming</au><au>Wang, Limin</au><au>Cheng, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insight into the Coprecipitation-Controlled Crystallization Reaction for Preparing Lithium-Layered Oxide Cathodes</atitle><jtitle>ACS applied materials & interfaces</jtitle><stitle>ACS APPL MATER INTER</stitle><addtitle>ACS Appl Mater Interfaces</addtitle><date>2021-01-13</date><risdate>2021</risdate><volume>13</volume><issue>1</issue><spage>717</spage><epage>726</epage><pages>717-726</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>The nucleation and growth of spherical Ni0.6Co0.2Mn0.2(OH)(2) agglomerates using the hydroxide coprecipitation (HCP) method in the presence of ammonia is investigated through chemical equilibrium calculations and experiments. In the nucleation stage, the transition metal ions in the salt solution gradually complete the nucleation reaction in the diffusion process from pH 5.4 to 11 after dropping into the continuously stirred tank reactor, and then Me(NH3)(n)(2+) and Me(OH)(2)(s) (Me: Ni, Co, and Mn) reach a dynamic precipitation dissolution equilibrium. In the growth stage, the concentration ratio of Me(NH3)(n)(2+) and OH- (complexation and precipitation, R-c/p) in the solution has an important influence on obtaining high-quality materials, which is further confirmed using the first principles density functional theory calculations on surface energy and adsorption energy. Then, the HCP reaction could be divided into three parts through experiments: incomplete precipitation area (R-c(/)p > 10.1); time-dependent area (R-c/p, = 0.1-10.1); and hard-to-control area (R-c(/)p <0.1). According to the optimal ratio (R-c/p = 3.4), a prediction formula for the optimal synthesis conditions of the materials is proposed (y = 0.7731 x ln(x + 0.0312) + 11.6708, the optimal pH value (y) corresponds to different ammonia concentrations (x)). The results obtained for the growth reaction mechanism and the prediction scheme would help the modification research of the materials and obtain the desired lithium-layered transition metal oxide cathode material with excellent performance in the shortest time.</abstract><cop>WASHINGTON</cop><pub>Amer Chemical Soc</pub><pmid>33389988</pmid><doi>10.1021/acsami.0c19493</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9618-9239</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2021-01, Vol.13 (1), p.717-726 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acsami_0c19493 |
source | ACS Publications; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Materials Science Materials Science, Multidisciplinary Nanoscience & Nanotechnology Science & Technology Science & Technology - Other Topics Technology |
title | Insight into the Coprecipitation-Controlled Crystallization Reaction for Preparing Lithium-Layered Oxide Cathodes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T19%3A00%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insight%20into%20the%20Coprecipitation-Controlled%20Crystallization%20Reaction%20for%20Preparing%20Lithium-Layered%20Oxide%20Cathodes&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Shen,%20Yabin&rft.date=2021-01-13&rft.volume=13&rft.issue=1&rft.spage=717&rft.epage=726&rft.pages=717-726&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.0c19493&rft_dat=%3Cproquest_cross%3E2475088338%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2475088338&rft_id=info:pmid/33389988&rfr_iscdi=true |