Insight into the Coprecipitation-Controlled Crystallization Reaction for Preparing Lithium-Layered Oxide Cathodes

The nucleation and growth of spherical Ni0.6Co0.2Mn0.2(OH)(2) agglomerates using the hydroxide coprecipitation (HCP) method in the presence of ammonia is investigated through chemical equilibrium calculations and experiments. In the nucleation stage, the transition metal ions in the salt solution gr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2021-01, Vol.13 (1), p.717-726
Hauptverfasser: Shen, Yabin, Wu, Yingqiang, Xue, Hongjin, Wang, Shaohua, Yin, Dongming, Wang, Limin, Cheng, Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 726
container_issue 1
container_start_page 717
container_title ACS applied materials & interfaces
container_volume 13
creator Shen, Yabin
Wu, Yingqiang
Xue, Hongjin
Wang, Shaohua
Yin, Dongming
Wang, Limin
Cheng, Yong
description The nucleation and growth of spherical Ni0.6Co0.2Mn0.2(OH)(2) agglomerates using the hydroxide coprecipitation (HCP) method in the presence of ammonia is investigated through chemical equilibrium calculations and experiments. In the nucleation stage, the transition metal ions in the salt solution gradually complete the nucleation reaction in the diffusion process from pH 5.4 to 11 after dropping into the continuously stirred tank reactor, and then Me(NH3)(n)(2+) and Me(OH)(2)(s) (Me: Ni, Co, and Mn) reach a dynamic precipitation dissolution equilibrium. In the growth stage, the concentration ratio of Me(NH3)(n)(2+) and OH- (complexation and precipitation, R-c/p) in the solution has an important influence on obtaining high-quality materials, which is further confirmed using the first principles density functional theory calculations on surface energy and adsorption energy. Then, the HCP reaction could be divided into three parts through experiments: incomplete precipitation area (R-c(/)p > 10.1); time-dependent area (R-c/p, = 0.1-10.1); and hard-to-control area (R-c(/)p
doi_str_mv 10.1021/acsami.0c19493
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsami_0c19493</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2475088338</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-2d4846d854202ecebdbbbaa43ccd3203190f2805b10634978e14a278da91577b3</originalsourceid><addsrcrecordid>eNqNkUtLxDAUhYMovrcupUtBOubVabqU4gsGFNF1SZPbmUjb1CRFx19v5uGsXd0D-c4h91yELgieEEzJjVRedmaCFSl4wfbQcZw8FTSj-zvN-RE68f4D4ymjODtER4wxURRCHKPPp96b-SIkpg82CQtISjs4UGYwQQZj-7S0fXC2bUEnpVv6INvW_KyfkleQai0a65IXB4N0pp8nMxMWZuzSmVyCi7bnb6NjrgwLq8GfoYNGth7Ot_MUvd_fvZWP6ez54am8naWKFllIqeaCT7XIOMUUFNS6rmspOVNKxy0YKXBDBc5qErfiRS6AcElzoWVBsjyv2Sm62uQOzn6O4EPVGa-gbWUPdvQV5XmGhYhNRHSyQZWz3jtoqsGZTrplRXC1qrna1Fxta46Gy232WHegd_hfrxEQG-ALatt4ZaBXsMNwvASJ_57ilcrLbdWlHfsQrdf_t7Jf9kecXQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2475088338</pqid></control><display><type>article</type><title>Insight into the Coprecipitation-Controlled Crystallization Reaction for Preparing Lithium-Layered Oxide Cathodes</title><source>ACS Publications</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Shen, Yabin ; Wu, Yingqiang ; Xue, Hongjin ; Wang, Shaohua ; Yin, Dongming ; Wang, Limin ; Cheng, Yong</creator><creatorcontrib>Shen, Yabin ; Wu, Yingqiang ; Xue, Hongjin ; Wang, Shaohua ; Yin, Dongming ; Wang, Limin ; Cheng, Yong</creatorcontrib><description>The nucleation and growth of spherical Ni0.6Co0.2Mn0.2(OH)(2) agglomerates using the hydroxide coprecipitation (HCP) method in the presence of ammonia is investigated through chemical equilibrium calculations and experiments. In the nucleation stage, the transition metal ions in the salt solution gradually complete the nucleation reaction in the diffusion process from pH 5.4 to 11 after dropping into the continuously stirred tank reactor, and then Me(NH3)(n)(2+) and Me(OH)(2)(s) (Me: Ni, Co, and Mn) reach a dynamic precipitation dissolution equilibrium. In the growth stage, the concentration ratio of Me(NH3)(n)(2+) and OH- (complexation and precipitation, R-c/p) in the solution has an important influence on obtaining high-quality materials, which is further confirmed using the first principles density functional theory calculations on surface energy and adsorption energy. Then, the HCP reaction could be divided into three parts through experiments: incomplete precipitation area (R-c(/)p &gt; 10.1); time-dependent area (R-c/p, = 0.1-10.1); and hard-to-control area (R-c(/)p &lt;0.1). According to the optimal ratio (R-c/p = 3.4), a prediction formula for the optimal synthesis conditions of the materials is proposed (y = 0.7731 x ln(x + 0.0312) + 11.6708, the optimal pH value (y) corresponds to different ammonia concentrations (x)). The results obtained for the growth reaction mechanism and the prediction scheme would help the modification research of the materials and obtain the desired lithium-layered transition metal oxide cathode material with excellent performance in the shortest time.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.0c19493</identifier><identifier>PMID: 33389988</identifier><language>eng</language><publisher>WASHINGTON: Amer Chemical Soc</publisher><subject>Materials Science ; Materials Science, Multidisciplinary ; Nanoscience &amp; Nanotechnology ; Science &amp; Technology ; Science &amp; Technology - Other Topics ; Technology</subject><ispartof>ACS applied materials &amp; interfaces, 2021-01, Vol.13 (1), p.717-726</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>40</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000611066000067</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c295t-2d4846d854202ecebdbbbaa43ccd3203190f2805b10634978e14a278da91577b3</citedby><cites>FETCH-LOGICAL-c295t-2d4846d854202ecebdbbbaa43ccd3203190f2805b10634978e14a278da91577b3</cites><orcidid>0000-0001-9618-9239</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,2766,27929,27930,39263</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33389988$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shen, Yabin</creatorcontrib><creatorcontrib>Wu, Yingqiang</creatorcontrib><creatorcontrib>Xue, Hongjin</creatorcontrib><creatorcontrib>Wang, Shaohua</creatorcontrib><creatorcontrib>Yin, Dongming</creatorcontrib><creatorcontrib>Wang, Limin</creatorcontrib><creatorcontrib>Cheng, Yong</creatorcontrib><title>Insight into the Coprecipitation-Controlled Crystallization Reaction for Preparing Lithium-Layered Oxide Cathodes</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS APPL MATER INTER</addtitle><addtitle>ACS Appl Mater Interfaces</addtitle><description>The nucleation and growth of spherical Ni0.6Co0.2Mn0.2(OH)(2) agglomerates using the hydroxide coprecipitation (HCP) method in the presence of ammonia is investigated through chemical equilibrium calculations and experiments. In the nucleation stage, the transition metal ions in the salt solution gradually complete the nucleation reaction in the diffusion process from pH 5.4 to 11 after dropping into the continuously stirred tank reactor, and then Me(NH3)(n)(2+) and Me(OH)(2)(s) (Me: Ni, Co, and Mn) reach a dynamic precipitation dissolution equilibrium. In the growth stage, the concentration ratio of Me(NH3)(n)(2+) and OH- (complexation and precipitation, R-c/p) in the solution has an important influence on obtaining high-quality materials, which is further confirmed using the first principles density functional theory calculations on surface energy and adsorption energy. Then, the HCP reaction could be divided into three parts through experiments: incomplete precipitation area (R-c(/)p &gt; 10.1); time-dependent area (R-c/p, = 0.1-10.1); and hard-to-control area (R-c(/)p &lt;0.1). According to the optimal ratio (R-c/p = 3.4), a prediction formula for the optimal synthesis conditions of the materials is proposed (y = 0.7731 x ln(x + 0.0312) + 11.6708, the optimal pH value (y) corresponds to different ammonia concentrations (x)). The results obtained for the growth reaction mechanism and the prediction scheme would help the modification research of the materials and obtain the desired lithium-layered transition metal oxide cathode material with excellent performance in the shortest time.</description><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Nanoscience &amp; Nanotechnology</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Technology</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkUtLxDAUhYMovrcupUtBOubVabqU4gsGFNF1SZPbmUjb1CRFx19v5uGsXd0D-c4h91yELgieEEzJjVRedmaCFSl4wfbQcZw8FTSj-zvN-RE68f4D4ymjODtER4wxURRCHKPPp96b-SIkpg82CQtISjs4UGYwQQZj-7S0fXC2bUEnpVv6INvW_KyfkleQai0a65IXB4N0pp8nMxMWZuzSmVyCi7bnb6NjrgwLq8GfoYNGth7Ot_MUvd_fvZWP6ez54am8naWKFllIqeaCT7XIOMUUFNS6rmspOVNKxy0YKXBDBc5qErfiRS6AcElzoWVBsjyv2Sm62uQOzn6O4EPVGa-gbWUPdvQV5XmGhYhNRHSyQZWz3jtoqsGZTrplRXC1qrna1Fxta46Gy232WHegd_hfrxEQG-ALatt4ZaBXsMNwvASJ_57ilcrLbdWlHfsQrdf_t7Jf9kecXQ</recordid><startdate>20210113</startdate><enddate>20210113</enddate><creator>Shen, Yabin</creator><creator>Wu, Yingqiang</creator><creator>Xue, Hongjin</creator><creator>Wang, Shaohua</creator><creator>Yin, Dongming</creator><creator>Wang, Limin</creator><creator>Cheng, Yong</creator><general>Amer Chemical Soc</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9618-9239</orcidid></search><sort><creationdate>20210113</creationdate><title>Insight into the Coprecipitation-Controlled Crystallization Reaction for Preparing Lithium-Layered Oxide Cathodes</title><author>Shen, Yabin ; Wu, Yingqiang ; Xue, Hongjin ; Wang, Shaohua ; Yin, Dongming ; Wang, Limin ; Cheng, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-2d4846d854202ecebdbbbaa43ccd3203190f2805b10634978e14a278da91577b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Nanoscience &amp; Nanotechnology</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Yabin</creatorcontrib><creatorcontrib>Wu, Yingqiang</creatorcontrib><creatorcontrib>Xue, Hongjin</creatorcontrib><creatorcontrib>Wang, Shaohua</creatorcontrib><creatorcontrib>Yin, Dongming</creatorcontrib><creatorcontrib>Wang, Limin</creatorcontrib><creatorcontrib>Cheng, Yong</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Yabin</au><au>Wu, Yingqiang</au><au>Xue, Hongjin</au><au>Wang, Shaohua</au><au>Yin, Dongming</au><au>Wang, Limin</au><au>Cheng, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insight into the Coprecipitation-Controlled Crystallization Reaction for Preparing Lithium-Layered Oxide Cathodes</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><stitle>ACS APPL MATER INTER</stitle><addtitle>ACS Appl Mater Interfaces</addtitle><date>2021-01-13</date><risdate>2021</risdate><volume>13</volume><issue>1</issue><spage>717</spage><epage>726</epage><pages>717-726</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>The nucleation and growth of spherical Ni0.6Co0.2Mn0.2(OH)(2) agglomerates using the hydroxide coprecipitation (HCP) method in the presence of ammonia is investigated through chemical equilibrium calculations and experiments. In the nucleation stage, the transition metal ions in the salt solution gradually complete the nucleation reaction in the diffusion process from pH 5.4 to 11 after dropping into the continuously stirred tank reactor, and then Me(NH3)(n)(2+) and Me(OH)(2)(s) (Me: Ni, Co, and Mn) reach a dynamic precipitation dissolution equilibrium. In the growth stage, the concentration ratio of Me(NH3)(n)(2+) and OH- (complexation and precipitation, R-c/p) in the solution has an important influence on obtaining high-quality materials, which is further confirmed using the first principles density functional theory calculations on surface energy and adsorption energy. Then, the HCP reaction could be divided into three parts through experiments: incomplete precipitation area (R-c(/)p &gt; 10.1); time-dependent area (R-c/p, = 0.1-10.1); and hard-to-control area (R-c(/)p &lt;0.1). According to the optimal ratio (R-c/p = 3.4), a prediction formula for the optimal synthesis conditions of the materials is proposed (y = 0.7731 x ln(x + 0.0312) + 11.6708, the optimal pH value (y) corresponds to different ammonia concentrations (x)). The results obtained for the growth reaction mechanism and the prediction scheme would help the modification research of the materials and obtain the desired lithium-layered transition metal oxide cathode material with excellent performance in the shortest time.</abstract><cop>WASHINGTON</cop><pub>Amer Chemical Soc</pub><pmid>33389988</pmid><doi>10.1021/acsami.0c19493</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9618-9239</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2021-01, Vol.13 (1), p.717-726
issn 1944-8244
1944-8252
language eng
recordid cdi_crossref_primary_10_1021_acsami_0c19493
source ACS Publications; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Materials Science
Materials Science, Multidisciplinary
Nanoscience & Nanotechnology
Science & Technology
Science & Technology - Other Topics
Technology
title Insight into the Coprecipitation-Controlled Crystallization Reaction for Preparing Lithium-Layered Oxide Cathodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T19%3A00%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insight%20into%20the%20Coprecipitation-Controlled%20Crystallization%20Reaction%20for%20Preparing%20Lithium-Layered%20Oxide%20Cathodes&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Shen,%20Yabin&rft.date=2021-01-13&rft.volume=13&rft.issue=1&rft.spage=717&rft.epage=726&rft.pages=717-726&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.0c19493&rft_dat=%3Cproquest_cross%3E2475088338%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2475088338&rft_id=info:pmid/33389988&rfr_iscdi=true