Multifunctional Ceramic Composite System for Simultaneous Thermal Protection and Electromagnetic Interference Shielding for Carbon Fiber-Reinforced Polymer Composites

Achieving a high electrical conductivity while maintaining a good thermal insulation is often contradictory in the material design for the goal of simultaneous thermal protection and electromagnetic interference shielding. The reason is that materials with a high electrical conductivity often pertai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2020-12, Vol.12 (52), p.58005-58017
Hauptverfasser: Jia, Yujun, Ajayi, Tosin D, Wahls, Benjamin H, Ramakrishnan, Kishore Ranganath, Ekkad, Srinath, Xu, Chengying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Achieving a high electrical conductivity while maintaining a good thermal insulation is often contradictory in the material design for the goal of simultaneous thermal protection and electromagnetic interference shielding. The reason is that materials with a high electrical conductivity often pertain a high thermal conductivity. To address this challenge, this study reports a multifunctional ceramic composite system for carbon fiber-reinforced polymer composites. The fabricated multifunctional ceramic composite system has a multilayer structure. The polymer-derived SiCN ceramic reinforced with yttria-stabilized zirconia fibers serves as the thermal protection and impedance-matching layer, while the yttria-stabilized zirconia fiber-reinforced SiCN ceramic with carbon nanotubes provides the electromagnetic interference shielding. The thermal conductance of the multilayered ceramic composite is about 22.5% lower compared to that of the carbon fiber-reinforced polymer composites. The thermal insulation test during the steady-state condition shows that the hybrid composite can be used up to 300 °C while keeping the temperature reaching the surface of carbon fiber-reinforced polymer composites at around 167.8 °C. The flame test was used to characterize the thermal protection capability under transient conditions. The hybrid composite showed temperature differences of 72.9 and 280.7 °C during the low- and high-temperature settings, respectively. The average total shielding efficiency per thickness of the fabricated four-layered ceramic composite system was 21.45 dB/mm, which showed a high reflection-dominant electromagnetic interference shielding. The average total shielding efficiency per thickness of the eight-layered composite system was 16.57 dB/mm, revealing a high absorption-dominant electromagnetic interference shielding. Typical carbon fiber-reinforced polymer composites reveal a reflection-dominant electromagnetic interference shielding. The electrons can freely move in the percolated carbon nanotubes within the inner layers of the composite material, which provide the improved electromagnetic interference shielding ability. The movement of electrons was impeded by the top and bottom layers whose thermal conduction relies on the lattice vibrations, resulting in a satisfactory thermal insulation of the composite materials and impedance matching with the free space. Results of this study showed that materials with a good thermal insulation and electromagne
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.0c17361