Near-Infrared-Activated Lysosome Pathway Death Induced by ROS Generated from Layered Double Hydroxide-Copper Sulfide Nanocomposites
The overdeveloped lysosomes in cancer cells are gaining increasing attention toward more precise and effective organelle-targeted cancer therapy. It is suggested that rod/plate-like nanomaterials with an appropriate size exhibited a greater quantity and longer-term lysosomal enrichment, as the shape...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2020-09, Vol.12 (36), p.40673-40683 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The overdeveloped lysosomes in cancer cells are gaining increasing attention toward more precise and effective organelle-targeted cancer therapy. It is suggested that rod/plate-like nanomaterials with an appropriate size exhibited a greater quantity and longer-term lysosomal enrichment, as the shape plays a notable role in the nanomaterial transmembrane process and subcellular behaviors. Herein, a biodegradable platform based on layered double hydroxide-copper sulfide nanocomposites (LDH-CuS NCs) is successfully prepared via in situ growth of CuS nanodots on LDH nanoplates. The as-prepared LDH-CuS NCs exhibited not only high photothermal conversion and near-infrared (NIR)-induced chemodynamic and photodynamic therapeutic efficacies, but also could achieve real-time in vivo photoacoustic imaging (PAI) of the entire tumor. LDH-CuS NCs accumulated in lysosomes would then generate extensive subcellular reactive oxygen species (ROS) in situ, leading to lysosomal membrane permeabilization (LMP) pathway-associated cell death both in vitro and in vivo. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.0c11739 |