Magnetic Targeting and Ultrasound Activation of Liposome–Microbubble Conjugate for Enhanced Delivery of Anticancer Therapies
Effective delivery of chemotherapeutics with minimal toxicity and maximal outcome is clinically important but technically challenging. Here, we synthesize a complex of doxorubicin (DOX)-loaded magneto-liposome (DOX-ML) microbubbles (DOX-ML-MBs) for magnetically responsive and ultrasonically sensitiv...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2020-05, Vol.12 (21), p.23737-23751 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Effective delivery of chemotherapeutics with minimal toxicity and maximal outcome is clinically important but technically challenging. Here, we synthesize a complex of doxorubicin (DOX)-loaded magneto-liposome (DOX-ML) microbubbles (DOX-ML-MBs) for magnetically responsive and ultrasonically sensitive delivery of anticancer therapies with enhanced efficiency. Citrate-stabilized iron oxide nanoparticles (MNs) of 6.8 ± 1.36 nm were synthesized, loaded with DOX in the core of oligolamellar vesicles of 172 ± 9.2 nm, and covalently conjugated with perfluorocarbon (PFC)-gas-loaded microbubbles to form DOX-ML-MBs of ∼4 μm. DOX-ML-MBs exhibited significant magnetism and were able to release chemotherapeutics and DOX-MLs instantly upon exposure to ultrasound (US) pulses. In vitro studies showed that DOX-ML-MBs in the presence of US pulses promoted apoptosis and were highly effective in killing both BxPc-3 and Panc02 pancreatic cancer cells even at a low dose. Significant reduction in the tumor volume was observed after intravenous administration of DOX-ML-MBs in comparison to the control group in a pancreatic cancer xenograft model of nude mice. Deeply penetrated iron oxide nanoparticles throughout the magnetically targeted tumor tissues in the presence of US stimulation were clearly observed. Our study demonstrated the potential of using DOX-ML-MBs for site-specific targeting and controlled drug release. It opens a new avenue for the treatment of pancreatic cancer and other tissue malignancies where precise delivery of therapeutics is necessary. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.0c05308 |