Single-Atom Cobalt Catalysts for Electrocatalytic Hydrodechlorination and Oxygen Reduction Reaction for the Degradation of Chlorinated Organic Compounds
Electrochemical reduction–oxidation processes with the aid of cathode catalysts are promising technologies for the decomposition of organic compounds. High-efficiency and low-cost catalysts for electrochemical reductive dechlorination and two-electron oxygen reduction reaction (ORR) are vital to the...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2020-05, Vol.12 (21), p.24019-24029 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Electrochemical reduction–oxidation processes with the aid of cathode catalysts are promising technologies for the decomposition of organic compounds. High-efficiency and low-cost catalysts for electrochemical reductive dechlorination and two-electron oxygen reduction reaction (ORR) are vital to the overall degradation of chlorinated organic compounds. This study reports electrochemical dechlorination using a single-atom Co-loaded sulfide graphene (Co-SG) catalyst via atomic hydrogen generated from the electrochemical reduction of H2O and electrolysis of hydrogen. The Co-SG electrocatalyst exhibited a remarkable performance for H2O2 synthesis with a half-wave potential of 0.70 V (vs RHE) and selectivity over 90%. The high electrochemical performance was achieved for bifunctional electrocatalysis with regard to the smaller overpotentials, faster kinetics, and higher cycling stability compared to the noble metal-based electrocatalysts. In this study, 2,4-dichlorobenzoic acid was well degraded and the TOC concentration was effectively reduced. This work introduces the preparation of a new active site for high-performance single-atom catalysts and also promotes its application in the electrochemical degradation of chlorinated organic pollutants. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.0c05159 |