Gold Nanoparticle-Coated Starch Magnetic Beads for the Separation, Concentration, and SERS-Based Detection of E. coli O157:H7

Here, we report gold nanoparticle-coated starch magnetic beads (AuNP@SMBs) that were prepared by in situ synthesis of AuNPs on the surface of SMBs. Upon functionalization of the surface with a specific antibody, the immuno-AuNP@SMBs were found to be effective in separating and concentrating the targ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2020-04, Vol.12 (16), p.18292-18300
Hauptverfasser: You, Sang-Mook, Luo, Ke, Jung, Jong-Yun, Jeong, Ki-Baek, Lee, Eun-Seon, Oh, Mi-Hwa, Kim, Young-Rok
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Here, we report gold nanoparticle-coated starch magnetic beads (AuNP@SMBs) that were prepared by in situ synthesis of AuNPs on the surface of SMBs. Upon functionalization of the surface with a specific antibody, the immuno-AuNP@SMBs were found to be effective in separating and concentrating the target pathogenic bacteria, Escherichia coli O157:H7, from an aqueous sample as well as providing a hotspot for surface-enhanced Raman scattering (SERS)-based detection. We employed a bifunctional linker protein, 4× gold-binding peptide-tagged Streptococcal protein G (4GS), to immobilize antibodies on AuNP@SMBs and AuNPs in an oriented form. The linker protein also served as a Raman reporter, exhibiting a strong and unique fingerprint signal during the SERS measurement. The amplitude of the SERS signal was shown to have a good correlation with the concentration of target bacteria ranging from 100 to 105 CFU/mL. The detection limit was determined to be as low as a single cell, and the background signals derived from nontarget bacteria were negligible due to the excellent specificity and colloidal stability of the immuno-AuNP@SMBs and SERS tags. The highly sensitive nature of the SERS-based detection system will provide a promising means to detect the pathogenic microorganisms in food or clinical specimen.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.0c00418