Effect of Base on the Facile Hydrothermal Preparation of Highly Active IrO x Oxygen Evolution Catalysts

The efficient electrochemical splitting of water is limited by the anodic oxygen evolution reaction (OER). IrO2 is a potential catalyst with sufficient activity and stability in acidic conditions to be applied in water electrolyzers. The redox properties and structural flexibility of amorphous iridi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied energy materials 2020-01, Vol.3 (1), p.800-809
Hauptverfasser: Ruiz Esquius, Jonathan, Morgan, David J, Spanos, Ioannis, Hewes, Daniel G, Freakley, Simon J, Hutchings, Graham J
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The efficient electrochemical splitting of water is limited by the anodic oxygen evolution reaction (OER). IrO2 is a potential catalyst with sufficient activity and stability in acidic conditions to be applied in water electrolyzers. The redox properties and structural flexibility of amorphous iridium oxo-hydroxide compared to crystalline rutile-IrO2 are associated with higher catalytic activity for the OER. We prepared IrO x OER catalysts by a simple hydrothermal method varying the alkali metal base (Li2CO3, LiOH, Na2CO3, NaOH, K2CO3, KOH) employed during the synthesis. This work reveals that the surface area, particle morphology, and the concentration of surface hydroxyl groups can be controlled by the base used and greatly influence the catalyst activity and stability for OER. It was found that materials prepared with bases containing lithium cations can lead to amorphous IrO x materials with a significantly lower overpotential (100 mV @ 1.5 mA·cm–2) and increased stability compared to materials prepared with other bases and rutile IrO2. This facile method leads to the synthesis of highly active and stable catalysts which can potentially be applied to larger scale catalyst preparations.
ISSN:2574-0962
2574-0962
DOI:10.1021/acsaem.9b01642