Highly Efficient and Stable Cellulose-Based Ion Gel Polymer Electrolyte for Solid-State Supercapacitors
To solve the current situation of low efficiency and instability of SCs, herein, the regenerated cellulose nanoparticles are applied on the electrolyte for the first time and a kind of solid-state SC with high performance is synthesized in a facile way. The electrolyte is prepared taking copolymer p...
Gespeichert in:
Veröffentlicht in: | ACS applied energy materials 2019-08, Vol.2 (8), p.5992-6001 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To solve the current situation of low efficiency and instability of SCs, herein, the regenerated cellulose nanoparticles are applied on the electrolyte for the first time and a kind of solid-state SC with high performance is synthesized in a facile way. The electrolyte is prepared taking copolymer poly(vinyl alcohol) (PVA) as the polymer matrix, 1-butyl-3-methylimidazolium trifluoromethansulfonate (BmimCF3SO3) as the supporting electrolyte, graphene oxide as the ionic conducting promoter, and regenerated cellulose nanoparticles as the regulator. This doped ion gel significantly improves the charge-transfer resistance, because the homogeneously distributed regenerated cellulose nanoparticles make the ion transmission more orderly and stable and then reduce charge transfer resistance greatly. A model of the transmission of ions in the novel electrolyte is proposed. The cellulose-based gel electrolyte enables the SC to show good capacity retention of about 80%, and its charge/discharge efficiency maintains at 98% after 10,000 cycles. Those satisfactory performances are due to the high ionic conductivity, excellent compatibility with carbon electrodes and long-term stability of the doped ion gel. Attributed to the simple procedure and its components, the gel electrolyte is highly scalable, cost-effective, safe, and nontoxic as well as has application potential in various energy storage and delivery systems. |
---|---|
ISSN: | 2574-0962 2574-0962 |
DOI: | 10.1021/acsaem.9b01109 |