Water-Stable Al(III) Coordination Polymer Glass with High Proton Conductivity toward Stable Electrolytes in a Fuel Cell
Coordination polymer (CP) glasses make up a class of solid-state proton conductors as possible electrolytes for anhydrous H2/O2 fuel cells. Toward these potential applications, the development of water-stable CP glasses is crucial to maintaining stable power generation over the long-term. Here, we r...
Gespeichert in:
Veröffentlicht in: | ACS applied energy materials 2024-12, Vol.7 (24), p.11937-11945 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Coordination polymer (CP) glasses make up a class of solid-state proton conductors as possible electrolytes for anhydrous H2/O2 fuel cells. Toward these potential applications, the development of water-stable CP glasses is crucial to maintaining stable power generation over the long-term. Here, we report a water-stable Al(III)-based CP glass ((dema)0.9[Al(H2O)1.8(H2PO4)3.9(H3PO4)1.1]). Compared to previously reported Zn-based CP glasses, the Al-based CP glass showed significantly higher hydrolytic stability due to stable coordination bonds. In addition to improved water stability, the Al-based CP glass exhibited high viscosity (η = 101–104 Pa·s) and high ionic conductivity (>20 mS·cm–1 at 120 °C) under anhydrous conditions. This unique property is attributed to a Grotthuss-type selective proton transport mechanism. The H2/O2 fuel cell power generation using this CP glass exhibited a high maximum power density (299 mW·cm–2) and high open-circuit voltage (0.93 V) under anhydrous conditions at 120 °C. These results demonstrate that the employment of Al(III) in CP glasses is a promising strategy for the practical application of CP glasses in fuel cell devices. |
---|---|
ISSN: | 2574-0962 2574-0962 |
DOI: | 10.1021/acsaem.4c02310 |