Spent Zinc–Carbon Battery-Derived Carbon Nanoparticles Coupled with Transition Metal Dichalcogenides for Enhanced pH-Universal Hydrogen Evolution Reaction

Utilizing highly effective waste-into-value electrocatalysts for the hydrogen evolution reaction (HER) opens a sustainable route to economically beneficial and environmentally friendly hydrogen production. A simple strategy for reusing spent batteries involves enhancing HER performance by preparing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied energy materials 2024-12, Vol.7 (23), p.10938-10949
Hauptverfasser: Phu, Thi Kim Cuong, Le, Ngan Nguyen, Tran, Thi Nhan, Vuong, Thuy Trang T., Nguyen, Huu-Doanh, Phung, Thi Viet Bac, Le, Phuoc-Anh, Nguyen, Phi Long
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10949
container_issue 23
container_start_page 10938
container_title ACS applied energy materials
container_volume 7
creator Phu, Thi Kim Cuong
Le, Ngan Nguyen
Tran, Thi Nhan
Vuong, Thuy Trang T.
Nguyen, Huu-Doanh
Phung, Thi Viet Bac
Le, Phuoc-Anh
Nguyen, Phi Long
description Utilizing highly effective waste-into-value electrocatalysts for the hydrogen evolution reaction (HER) opens a sustainable route to economically beneficial and environmentally friendly hydrogen production. A simple strategy for reusing spent batteries involves enhancing HER performance by preparing electrocatalysts of the carbon anode in spent zinc–carbon batteries and transition metal dichalcogenide (TMDs) materials. In this study, carbon nanoparticles (CNPs) are incorporated into the basal planes of MoS2 and WS2 using a simple ultrasonication method. CNPs@TMDs (CNPs@WS2 and CNPs@MoS2) with fewer-layer structures and enhanced exposed active sites show promising catalytic activity for pH-universal HER. In acid, CNPs@WS2 and CNPs@MoS2 exhibit overpotentials of 0.34 and 0.42 V at 10 mA cm–2, with Tafel slopes of 0.139 V dec–1 and 0.145 V dec–1, respectively. The enhanced HER performance of CNPs@TMDs originates from their improved electrical conductivity and higher electrochemically active surface area. Alongside experimental results, density function theory (DFT) calculations reveal that incorporating carbon atoms on the TMD surface can efficiently tune the electronic properties of MoS2 and WS2 monolayers from semiconductor to semimetal and considerably reduces the hydrogen adsorption Gibbs free energies. These results indicate that highly effective HER catalysts with enhanced catalytic activity in universal pH media are fabricated via an economical and facile method, holding promise for practical applications and paving the way for battery recycling.
doi_str_mv 10.1021/acsaem.4c01791
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsaem_4c01791</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c459635338</sourcerecordid><originalsourceid>FETCH-LOGICAL-a159t-87941cf17d8f69f571b86e464ee630a2f8c8ba42bb8f49920f27d9bdeae965db3</originalsourceid><addsrcrecordid>eNp1kL1OAzEQhE8IJKKQlto10gXb3J9LuASCFECCpKE57fls4uhin2wnKB3vQMvT8SQ4JAUN1Y52vxmtJorOCR4STMklcAdiNUw4JjkjR1GPpnkSY5bR4z_6NBo4t8QYE0Yyylgv-nrphPboVWn-_fFZgq2NRjfgvbDbeCSs2ogGHdaPoE0H1iveCodKs-7acHxXfoFmFrRTXgXqQXho0UjxBbTcvAmtmkBLY9FYL0DzYOkm8VyHZOsCOdk2doeh8ca069-IZwF8J86iEwmtE4PD7Efz2_GsnMTTp7v78noaA0mZj4ucJYRLkjeFzJhMc1IXmUiyRIjsCgOVBS9qSGhdFzJhjGJJ84bVjQDBsrSpr_rRcJ_LrXHOCll1Vq3AbiuCq1291b7e6lBvMFzsDWFfLc3a6vDef_AP5bWB7w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Spent Zinc–Carbon Battery-Derived Carbon Nanoparticles Coupled with Transition Metal Dichalcogenides for Enhanced pH-Universal Hydrogen Evolution Reaction</title><source>ACS Publications</source><creator>Phu, Thi Kim Cuong ; Le, Ngan Nguyen ; Tran, Thi Nhan ; Vuong, Thuy Trang T. ; Nguyen, Huu-Doanh ; Phung, Thi Viet Bac ; Le, Phuoc-Anh ; Nguyen, Phi Long</creator><creatorcontrib>Phu, Thi Kim Cuong ; Le, Ngan Nguyen ; Tran, Thi Nhan ; Vuong, Thuy Trang T. ; Nguyen, Huu-Doanh ; Phung, Thi Viet Bac ; Le, Phuoc-Anh ; Nguyen, Phi Long</creatorcontrib><description>Utilizing highly effective waste-into-value electrocatalysts for the hydrogen evolution reaction (HER) opens a sustainable route to economically beneficial and environmentally friendly hydrogen production. A simple strategy for reusing spent batteries involves enhancing HER performance by preparing electrocatalysts of the carbon anode in spent zinc–carbon batteries and transition metal dichalcogenide (TMDs) materials. In this study, carbon nanoparticles (CNPs) are incorporated into the basal planes of MoS2 and WS2 using a simple ultrasonication method. CNPs@TMDs (CNPs@WS2 and CNPs@MoS2) with fewer-layer structures and enhanced exposed active sites show promising catalytic activity for pH-universal HER. In acid, CNPs@WS2 and CNPs@MoS2 exhibit overpotentials of 0.34 and 0.42 V at 10 mA cm–2, with Tafel slopes of 0.139 V dec–1 and 0.145 V dec–1, respectively. The enhanced HER performance of CNPs@TMDs originates from their improved electrical conductivity and higher electrochemically active surface area. Alongside experimental results, density function theory (DFT) calculations reveal that incorporating carbon atoms on the TMD surface can efficiently tune the electronic properties of MoS2 and WS2 monolayers from semiconductor to semimetal and considerably reduces the hydrogen adsorption Gibbs free energies. These results indicate that highly effective HER catalysts with enhanced catalytic activity in universal pH media are fabricated via an economical and facile method, holding promise for practical applications and paving the way for battery recycling.</description><identifier>ISSN: 2574-0962</identifier><identifier>EISSN: 2574-0962</identifier><identifier>DOI: 10.1021/acsaem.4c01791</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied energy materials, 2024-12, Vol.7 (23), p.10938-10949</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a159t-87941cf17d8f69f571b86e464ee630a2f8c8ba42bb8f49920f27d9bdeae965db3</cites><orcidid>0000-0003-4549-4166</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsaem.4c01791$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsaem.4c01791$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Phu, Thi Kim Cuong</creatorcontrib><creatorcontrib>Le, Ngan Nguyen</creatorcontrib><creatorcontrib>Tran, Thi Nhan</creatorcontrib><creatorcontrib>Vuong, Thuy Trang T.</creatorcontrib><creatorcontrib>Nguyen, Huu-Doanh</creatorcontrib><creatorcontrib>Phung, Thi Viet Bac</creatorcontrib><creatorcontrib>Le, Phuoc-Anh</creatorcontrib><creatorcontrib>Nguyen, Phi Long</creatorcontrib><title>Spent Zinc–Carbon Battery-Derived Carbon Nanoparticles Coupled with Transition Metal Dichalcogenides for Enhanced pH-Universal Hydrogen Evolution Reaction</title><title>ACS applied energy materials</title><addtitle>ACS Appl. Energy Mater</addtitle><description>Utilizing highly effective waste-into-value electrocatalysts for the hydrogen evolution reaction (HER) opens a sustainable route to economically beneficial and environmentally friendly hydrogen production. A simple strategy for reusing spent batteries involves enhancing HER performance by preparing electrocatalysts of the carbon anode in spent zinc–carbon batteries and transition metal dichalcogenide (TMDs) materials. In this study, carbon nanoparticles (CNPs) are incorporated into the basal planes of MoS2 and WS2 using a simple ultrasonication method. CNPs@TMDs (CNPs@WS2 and CNPs@MoS2) with fewer-layer structures and enhanced exposed active sites show promising catalytic activity for pH-universal HER. In acid, CNPs@WS2 and CNPs@MoS2 exhibit overpotentials of 0.34 and 0.42 V at 10 mA cm–2, with Tafel slopes of 0.139 V dec–1 and 0.145 V dec–1, respectively. The enhanced HER performance of CNPs@TMDs originates from their improved electrical conductivity and higher electrochemically active surface area. Alongside experimental results, density function theory (DFT) calculations reveal that incorporating carbon atoms on the TMD surface can efficiently tune the electronic properties of MoS2 and WS2 monolayers from semiconductor to semimetal and considerably reduces the hydrogen adsorption Gibbs free energies. These results indicate that highly effective HER catalysts with enhanced catalytic activity in universal pH media are fabricated via an economical and facile method, holding promise for practical applications and paving the way for battery recycling.</description><issn>2574-0962</issn><issn>2574-0962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kL1OAzEQhE8IJKKQlto10gXb3J9LuASCFECCpKE57fls4uhin2wnKB3vQMvT8SQ4JAUN1Y52vxmtJorOCR4STMklcAdiNUw4JjkjR1GPpnkSY5bR4z_6NBo4t8QYE0Yyylgv-nrphPboVWn-_fFZgq2NRjfgvbDbeCSs2ogGHdaPoE0H1iveCodKs-7acHxXfoFmFrRTXgXqQXho0UjxBbTcvAmtmkBLY9FYL0DzYOkm8VyHZOsCOdk2doeh8ca069-IZwF8J86iEwmtE4PD7Efz2_GsnMTTp7v78noaA0mZj4ucJYRLkjeFzJhMc1IXmUiyRIjsCgOVBS9qSGhdFzJhjGJJ84bVjQDBsrSpr_rRcJ_LrXHOCll1Vq3AbiuCq1291b7e6lBvMFzsDWFfLc3a6vDef_AP5bWB7w</recordid><startdate>20241209</startdate><enddate>20241209</enddate><creator>Phu, Thi Kim Cuong</creator><creator>Le, Ngan Nguyen</creator><creator>Tran, Thi Nhan</creator><creator>Vuong, Thuy Trang T.</creator><creator>Nguyen, Huu-Doanh</creator><creator>Phung, Thi Viet Bac</creator><creator>Le, Phuoc-Anh</creator><creator>Nguyen, Phi Long</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4549-4166</orcidid></search><sort><creationdate>20241209</creationdate><title>Spent Zinc–Carbon Battery-Derived Carbon Nanoparticles Coupled with Transition Metal Dichalcogenides for Enhanced pH-Universal Hydrogen Evolution Reaction</title><author>Phu, Thi Kim Cuong ; Le, Ngan Nguyen ; Tran, Thi Nhan ; Vuong, Thuy Trang T. ; Nguyen, Huu-Doanh ; Phung, Thi Viet Bac ; Le, Phuoc-Anh ; Nguyen, Phi Long</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a159t-87941cf17d8f69f571b86e464ee630a2f8c8ba42bb8f49920f27d9bdeae965db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Phu, Thi Kim Cuong</creatorcontrib><creatorcontrib>Le, Ngan Nguyen</creatorcontrib><creatorcontrib>Tran, Thi Nhan</creatorcontrib><creatorcontrib>Vuong, Thuy Trang T.</creatorcontrib><creatorcontrib>Nguyen, Huu-Doanh</creatorcontrib><creatorcontrib>Phung, Thi Viet Bac</creatorcontrib><creatorcontrib>Le, Phuoc-Anh</creatorcontrib><creatorcontrib>Nguyen, Phi Long</creatorcontrib><collection>CrossRef</collection><jtitle>ACS applied energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Phu, Thi Kim Cuong</au><au>Le, Ngan Nguyen</au><au>Tran, Thi Nhan</au><au>Vuong, Thuy Trang T.</au><au>Nguyen, Huu-Doanh</au><au>Phung, Thi Viet Bac</au><au>Le, Phuoc-Anh</au><au>Nguyen, Phi Long</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spent Zinc–Carbon Battery-Derived Carbon Nanoparticles Coupled with Transition Metal Dichalcogenides for Enhanced pH-Universal Hydrogen Evolution Reaction</atitle><jtitle>ACS applied energy materials</jtitle><addtitle>ACS Appl. Energy Mater</addtitle><date>2024-12-09</date><risdate>2024</risdate><volume>7</volume><issue>23</issue><spage>10938</spage><epage>10949</epage><pages>10938-10949</pages><issn>2574-0962</issn><eissn>2574-0962</eissn><abstract>Utilizing highly effective waste-into-value electrocatalysts for the hydrogen evolution reaction (HER) opens a sustainable route to economically beneficial and environmentally friendly hydrogen production. A simple strategy for reusing spent batteries involves enhancing HER performance by preparing electrocatalysts of the carbon anode in spent zinc–carbon batteries and transition metal dichalcogenide (TMDs) materials. In this study, carbon nanoparticles (CNPs) are incorporated into the basal planes of MoS2 and WS2 using a simple ultrasonication method. CNPs@TMDs (CNPs@WS2 and CNPs@MoS2) with fewer-layer structures and enhanced exposed active sites show promising catalytic activity for pH-universal HER. In acid, CNPs@WS2 and CNPs@MoS2 exhibit overpotentials of 0.34 and 0.42 V at 10 mA cm–2, with Tafel slopes of 0.139 V dec–1 and 0.145 V dec–1, respectively. The enhanced HER performance of CNPs@TMDs originates from their improved electrical conductivity and higher electrochemically active surface area. Alongside experimental results, density function theory (DFT) calculations reveal that incorporating carbon atoms on the TMD surface can efficiently tune the electronic properties of MoS2 and WS2 monolayers from semiconductor to semimetal and considerably reduces the hydrogen adsorption Gibbs free energies. These results indicate that highly effective HER catalysts with enhanced catalytic activity in universal pH media are fabricated via an economical and facile method, holding promise for practical applications and paving the way for battery recycling.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsaem.4c01791</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4549-4166</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2574-0962
ispartof ACS applied energy materials, 2024-12, Vol.7 (23), p.10938-10949
issn 2574-0962
2574-0962
language eng
recordid cdi_crossref_primary_10_1021_acsaem_4c01791
source ACS Publications
title Spent Zinc–Carbon Battery-Derived Carbon Nanoparticles Coupled with Transition Metal Dichalcogenides for Enhanced pH-Universal Hydrogen Evolution Reaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T16%3A49%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spent%20Zinc%E2%80%93Carbon%20Battery-Derived%20Carbon%20Nanoparticles%20Coupled%20with%20Transition%20Metal%20Dichalcogenides%20for%20Enhanced%20pH-Universal%20Hydrogen%20Evolution%20Reaction&rft.jtitle=ACS%20applied%20energy%20materials&rft.au=Phu,%20Thi%20Kim%20Cuong&rft.date=2024-12-09&rft.volume=7&rft.issue=23&rft.spage=10938&rft.epage=10949&rft.pages=10938-10949&rft.issn=2574-0962&rft.eissn=2574-0962&rft_id=info:doi/10.1021/acsaem.4c01791&rft_dat=%3Cacs_cross%3Ec459635338%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true