Spent Zinc–Carbon Battery-Derived Carbon Nanoparticles Coupled with Transition Metal Dichalcogenides for Enhanced pH-Universal Hydrogen Evolution Reaction
Utilizing highly effective waste-into-value electrocatalysts for the hydrogen evolution reaction (HER) opens a sustainable route to economically beneficial and environmentally friendly hydrogen production. A simple strategy for reusing spent batteries involves enhancing HER performance by preparing...
Gespeichert in:
Veröffentlicht in: | ACS applied energy materials 2024-12, Vol.7 (23), p.10938-10949 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Utilizing highly effective waste-into-value electrocatalysts for the hydrogen evolution reaction (HER) opens a sustainable route to economically beneficial and environmentally friendly hydrogen production. A simple strategy for reusing spent batteries involves enhancing HER performance by preparing electrocatalysts of the carbon anode in spent zinc–carbon batteries and transition metal dichalcogenide (TMDs) materials. In this study, carbon nanoparticles (CNPs) are incorporated into the basal planes of MoS2 and WS2 using a simple ultrasonication method. CNPs@TMDs (CNPs@WS2 and CNPs@MoS2) with fewer-layer structures and enhanced exposed active sites show promising catalytic activity for pH-universal HER. In acid, CNPs@WS2 and CNPs@MoS2 exhibit overpotentials of 0.34 and 0.42 V at 10 mA cm–2, with Tafel slopes of 0.139 V dec–1 and 0.145 V dec–1, respectively. The enhanced HER performance of CNPs@TMDs originates from their improved electrical conductivity and higher electrochemically active surface area. Alongside experimental results, density function theory (DFT) calculations reveal that incorporating carbon atoms on the TMD surface can efficiently tune the electronic properties of MoS2 and WS2 monolayers from semiconductor to semimetal and considerably reduces the hydrogen adsorption Gibbs free energies. These results indicate that highly effective HER catalysts with enhanced catalytic activity in universal pH media are fabricated via an economical and facile method, holding promise for practical applications and paving the way for battery recycling. |
---|---|
ISSN: | 2574-0962 2574-0962 |
DOI: | 10.1021/acsaem.4c01791 |