Toward Ultralong Lifespan Aqueous Zinc-Ion Batteries via Sulfur-Defect Vanadium Tetrasulfide Cathode
Vanadium sulfide has become one of the promising cathodes of aqueous rechargeable zinc-ion batteries (AZIBs); however, the further application of vanadium sulfides for AZIBs is severely restricted by the limited specific capacity and poor cycling stability. Herein, we synthesize the vanadium tetrasu...
Gespeichert in:
Veröffentlicht in: | ACS applied energy materials 2023-03, Vol.6 (5), p.2680-2686 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Vanadium sulfide has become one of the promising cathodes of aqueous rechargeable zinc-ion batteries (AZIBs); however, the further application of vanadium sulfides for AZIBs is severely restricted by the limited specific capacity and poor cycling stability. Herein, we synthesize the vanadium tetrasulfide nanosphere with S-defects and coated by an ultrathin carbon layer (D-VS4). The as-assembled Zn//D-VS4 cell delivers a high specific capacity of 295 mAh g–1 at 0.5 A g–1 and long-time cycling stability (a capacity retention of 72.0% after 8,000 cycles). The electrochemical reaction mechanism of D-VS4 is revealed. This work provides a significant supplement to the study of vanadium-based sulfides cathode for AZIBs. |
---|---|
ISSN: | 2574-0962 2574-0962 |
DOI: | 10.1021/acsaem.2c04102 |