Expanding the Perspective of Polymeric Selective Contacts in Photovoltaic Devices Using Branched Polyethylenimine
This work studies the use of polymeric layers of polyethylenimine (PEI) as an interface modification of electron-selective contacts. A clearly enhanced electrical transport with lower contact resistance and significant surface passivation (about 3 ms) can be achieved with PEI modification. As for ot...
Gespeichert in:
Veröffentlicht in: | ACS applied energy materials 2022-09, Vol.5 (9), p.10702-10709 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This work studies the use of polymeric layers of polyethylenimine (PEI) as an interface modification of electron-selective contacts. A clearly enhanced electrical transport with lower contact resistance and significant surface passivation (about 3 ms) can be achieved with PEI modification. As for other conjugated polyelectrolytes, protonated groups of the polymer with their respective counter anions from the solvent create an intense dipole. In this work, part of the amine groups in PEI are protonated by ethanol that behaves as a weak Brønsted acid during the process. A comprehensive characterization including high-resolution compositional analysis confirms the formation of a dipolar interlayer. The PEI modification is able to eliminate completely Fermi-level pinning at metal/semiconductor junctions and shifts the work function of the metallic electrode by more than 1 eV. Induced charge transport between the metal and the semiconductor allows the formation of an electron accumulation region. Consequently, electron-selective contacts are clearly improved with a significant reduction of the specific contact resistance (less than 100 mΩ·cm2). Proof-of-concept dopant-free solar cells on silicon were fabricated to demonstrate the beneficial effect of PEI dipolar interlayers. Full dopant-free solar cells with conversion efficiencies of about 14% could be fabricated on flat wafers. The PEI modification also improved the performance of classical high-efficiency heterojunction solar cells. |
---|---|
ISSN: | 2574-0962 2574-0962 |
DOI: | 10.1021/acsaem.2c01422 |