Polymer–Ceramic Composite Cathode with Enhanced Storage Capacity Manufactured by Field-Assisted Sintering and Infiltration
Polymer–ceramic all-solid-state Li batteries (ASSLBs) combine the advantages of fully inorganic and polymer-based ASSLBs. In particular, the application of proposed polymer–ceramic composite cathodes could be essential for the enhancement of the energy storage capacity of ASSLBs. The use of a modifi...
Gespeichert in:
Veröffentlicht in: | ACS applied energy materials 2021-10, Vol.4 (10), p.10428-10432 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Polymer–ceramic all-solid-state Li batteries (ASSLBs) combine the advantages of fully inorganic and polymer-based ASSLBs. In particular, the application of proposed polymer–ceramic composite cathodes could be essential for the enhancement of the energy storage capacity of ASSLBs. The use of a modified field-assisted sintering technique with adjustable pressure and with alternative mica foil enables the fabrication of porous cathodes at a reduced sintering temperature and without side phase formation. This allows sintering of a porous LiCoO2/Li7La3Zr2O12:Ta composite network suitable for polymer infiltration and assembly in an ASSLB from the cathode side. The ceramic LiCoO2/Li7La3Zr2O12:Ta composite cathodes infiltrated with an ion-conducting polymer have shown an enhanced areal storage capacity. |
---|---|
ISSN: | 2574-0962 2574-0962 |
DOI: | 10.1021/acsaem.1c02667 |