Complex Hydride Solid Electrolytes of the Li(CB9H10)–Li(CB11H12) Quasi-Binary System: Relationship between the Solid Solution and Phase Transition, and the Electrochemical Properties
Closo-type complex hydrides have recently received much attention as promising solid electrolyte systems for all-solid-state batteries, because of the high lithium ion conductivity of their high-temperature (high-T) phases, excellent stability against a lithium metal anode, and a highly deformable n...
Gespeichert in:
Veröffentlicht in: | ACS applied energy materials 2020-05, Vol.3 (5), p.4831-4839 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Closo-type complex hydrides have recently received much attention as promising solid electrolyte systems for all-solid-state batteries, because of the high lithium ion conductivity of their high-temperature (high-T) phases, excellent stability against a lithium metal anode, and a highly deformable nature. However, the superionic conductivity of closo-type complex hydrides is achieved in only a few materials; therefore, an understanding of the material factors involved in the formation of the high-T phase at room temperature and experimental demonstration of their battery applications are required. Here, we report the relationship between the solid solution and formation of the high-T phase of the Li(CB9H10)–Li(CB11H12) quasi-binary system, and the electrochemical properties as a solid electrolyte for all-solid-state Li–TiS2 batteries. The single-phase solid solutions, Li(CB9H10)-based phase in which [CB9H10]− is partially substituted with [CB11H12]− and Li(CB11H12)-based phase in which [CB11H12]− is partially substituted with [CB9H10]−, are obtained at compositions with low- and high-x in the (1 – x)Li(CB9H10)–xLi(CB11H12) (0.1 ≤ x ≤ 0.9) system. The effect of the solid solution on structural changes is more noticeable at low x, whereby a superionic conducting phase is formed with an identical structural framework as that of the high-T phase of Li(CB9H10) at room temperature. In addition, the 0.7Li(CB9H10)–0.3Li(CB11H12) (x = 0.3) solid electrolyte exhibits high chemical/electrochemical stability against a TiS2 cathode, which leads to superior performance in the rate capability and cycle life of all-solid-state Li–TiS2 batteries. The results presented here offer insights into strategies for the design of complex hydride lithium superionic conductors and for the development of all-solid-state batteries with these solid electrolytes. |
---|---|
ISSN: | 2574-0962 2574-0962 |
DOI: | 10.1021/acsaem.0c00433 |