Long-Term Stable Organic Solar Cells through Amphiphilic Additives

Organic solar cells have recently experienced tremendous efficiency improvements, but their longevity is still limited by morphological degradation, among other factors. We demonstrate in this work that small amounts of amphiphilic small molecules such as perylene monoimide-diamine (PMIDA-C12) admix...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied electronic materials 2024-04, Vol.6 (4), p.2258-2267
Hauptverfasser: Gerase, Yisak Tsegazab, Garcia Lopez, Javier, Madalaimuthu, Jose Prince, Elmanova, Anna, Finkelmeyer, Sarah Jasmin, Dellith, Andrea, Blaschke, Daniel, Schmidt, Heidemarie, Peneva, Kalina, Hoppe, Harald, Presselt, Martin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Organic solar cells have recently experienced tremendous efficiency improvements, but their longevity is still limited by morphological degradation, among other factors. We demonstrate in this work that small amounts of amphiphilic small molecules such as perylene monoimide-diamine (PMIDA-C12) admixed to the active layer can dramatically improve the longevity of classical polymer solar cells (P3HT:PC60BM). While fill factors and efficiencies of classical reference solar cells without amphiphile dropped to 35 and 4% of their original values after 588 h of artificial aging (at 80 °C), respectively, these values are stable at 80% of their initial values for the solar cells containing 0.01 wt % PMIDA-C12. Spectroscopic and atomic force microscopy studies indicate that the amphiphiles stabilize the morphology of the active layers. Hence, the presented approach of doping the active layer with an amphiphilic molecule appears to be promising for improving the long-term stability of organic solar cells.
ISSN:2637-6113
2637-6113
DOI:10.1021/acsaelm.3c01722