Lateral Modulation of Magnetic Anisotropy in Tricolor 3d–5d Oxide Superlattices

Manipulating magnetic anisotropy (MA) purposefully in transition metal oxides (TMOs) enables the development of oxide-based spintronic devices with practical applications. Here, we report a pathway to reversibly switch the lateral magnetic easy-axis via interfacial oxygen octahedral coupling (OOC) e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied electronic materials 2021-09, Vol.3 (9), p.4210-4217
Hauptverfasser: Lu, Zengxing, Liu, Jingwu, Wen, Lijie, Feng, Jiatai, Kong, Shuai, Zheng, Xuan, Li, Sheng, Jiang, Peiheng, Zhong, Zhicheng, Zhu, Junfa, Hao, Xianfeng, Wang, Zhiming, Li, Run-Wei
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Manipulating magnetic anisotropy (MA) purposefully in transition metal oxides (TMOs) enables the development of oxide-based spintronic devices with practical applications. Here, we report a pathway to reversibly switch the lateral magnetic easy-axis via interfacial oxygen octahedral coupling (OOC) effects in 3d–5d tricolor superlattices, i.e., [SrIrO3,mRTiO3,SrIrO3,2La0.67Sr0.33MnO3]10 (RTiO3: SrTiO3 and CaTiO3). In the heterostructures, the anisotropy energy (MAE) is enhanced over one magnitude to ∼106 erg/cm3 compared to La0.67Sr0.33MnO3 films. Moreover, the magnetic easy-axis is reversibly reoriented between (100) and (110) directions by changing the RTiO3. Using first-principles density functional theory calculations, we find that the SrIrO3 owns a large single-ion anisotropy due to its strong spin–orbit interaction. This anisotropy can be reversibly controlled by the OOC and then reorient the easy-axis of the superlattices. Additionally, it enlarges the MAE of the films via the cooperation with a robust orbital hybridization between the Ir and Mn atoms. Our results indicate that the tricolor superlattices consisting of 3d and 5d oxides provide a powerful platform to study the MA and develop oxide-based spintronic devices.
ISSN:2637-6113
2637-6113
DOI:10.1021/acsaelm.1c00658