Lateral Modulation of Magnetic Anisotropy in Tricolor 3d–5d Oxide Superlattices
Manipulating magnetic anisotropy (MA) purposefully in transition metal oxides (TMOs) enables the development of oxide-based spintronic devices with practical applications. Here, we report a pathway to reversibly switch the lateral magnetic easy-axis via interfacial oxygen octahedral coupling (OOC) e...
Gespeichert in:
Veröffentlicht in: | ACS applied electronic materials 2021-09, Vol.3 (9), p.4210-4217 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Manipulating magnetic anisotropy (MA) purposefully in transition metal oxides (TMOs) enables the development of oxide-based spintronic devices with practical applications. Here, we report a pathway to reversibly switch the lateral magnetic easy-axis via interfacial oxygen octahedral coupling (OOC) effects in 3d–5d tricolor superlattices, i.e., [SrIrO3,mRTiO3,SrIrO3,2La0.67Sr0.33MnO3]10 (RTiO3: SrTiO3 and CaTiO3). In the heterostructures, the anisotropy energy (MAE) is enhanced over one magnitude to ∼106 erg/cm3 compared to La0.67Sr0.33MnO3 films. Moreover, the magnetic easy-axis is reversibly reoriented between (100) and (110) directions by changing the RTiO3. Using first-principles density functional theory calculations, we find that the SrIrO3 owns a large single-ion anisotropy due to its strong spin–orbit interaction. This anisotropy can be reversibly controlled by the OOC and then reorient the easy-axis of the superlattices. Additionally, it enlarges the MAE of the films via the cooperation with a robust orbital hybridization between the Ir and Mn atoms. Our results indicate that the tricolor superlattices consisting of 3d and 5d oxides provide a powerful platform to study the MA and develop oxide-based spintronic devices. |
---|---|
ISSN: | 2637-6113 2637-6113 |
DOI: | 10.1021/acsaelm.1c00658 |