High-Performance Fiber-Film Hybrid-Structured Wearable Strain Sensor from a Highly Robust and Conductive Carbonized Bamboo Aerogel
Bamboo, one of the most abundant biomaterials, has been used as a building material since ancient times; however, its application in functional materials has been rarely explored. Herein, a highly robust and conductive carbonized bamboo aerogel (CBA) is obtained from the natural bamboo through a sim...
Gespeichert in:
Veröffentlicht in: | ACS applied bio materials 2020-12, Vol.3 (12), p.8748-8756 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Bamboo, one of the most abundant biomaterials, has been used as a building material since ancient times; however, its application in functional materials has been rarely explored. Herein, a highly robust and conductive carbonized bamboo aerogel (CBA) is obtained from the natural bamboo through a simple three-step process of pulp oxidization, freeze-drying, and carbonization. The CBA obtained shows not only a low density of 0.02 g/cm3 but also a high conductivity of 6.42 S/m and remarkable elasticity with a maximum recoverable compressive strain of 60% due to its unique three-dimensional (3D) network randomly stacked with the hybrid structure of carbonized bamboo fibers and films. After encapsulation with silicone resin, the CBA/silicone composite prepared exhibits excellent flexibility and stretchability with a low Young’s modulus (0.09 MPa) and a large failure strain (275%). Importantly, the CBA/silicone composite also offers remarkable strain-sensing performance with a maximum gauge factor of 30.6, a short responsive time of 50 ms, and a stable response to cyclic loading over 1000 cycles, which is comparable to those of the piezoresistive composites based on expensive nanomaterials. Moreover, the CBA/silicone composite demonstrates the capability as a wearable strain sensor for human motion recognition comprising finger bending, breathing, and throat movement. Considering the green and sustainable nature of bamboo as a raw material, combined with the excellent piezoresistive performance, low production cost, and simple preparation process, the flexible strain sensors with CBA/silicone composite as a sensing element are promising in wearable electronic devices, personalized healthcare, and artificial intelligence systems. |
---|---|
ISSN: | 2576-6422 2576-6422 |
DOI: | 10.1021/acsabm.0c01128 |