Brønsted Acid-Lewis Acid (BA-LA) Induced Final Deprotection/Peptide Resin Cleavage in Fmoc/ t- Bu Solid-Phase Peptide Synthesis: HCl/FeCl 3 and AcOH/FeCl 3 as Viable PFAS-Free Alternatives for TFA
The widely used Fmoc/ -Bu solid-phase peptide synthesis (SPPS) is hampered by relying on corrosive, per/polyfluoroalkyl substance (PFAS) classified trifluoroacetic acid (TFA) as a universal protecting group (PG) removal/resin cleavage reagent. We report that suitable combinations of Brønsted acids (...
Gespeichert in:
Veröffentlicht in: | Organic letters 2024-08, Vol.26 (31), p.6787-6791 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The widely used Fmoc/
-Bu solid-phase peptide synthesis (SPPS) is hampered by relying on corrosive, per/polyfluoroalkyl substance (PFAS) classified trifluoroacetic acid (TFA) as a universal protecting group (PG) removal/resin cleavage reagent. We report that suitable combinations of Brønsted acids (BAs) and Lewis acids (LAs) such as HCl/FeCl
and AcOH/FeCl
constitute viable alternatives for TFA as PFAS-free cleavage agents. Using water miscible dimethyl carbonate (DMC) and acetonitrile (MeCN) as solvents enabled diluting cleavage mixtures with suitable aqueous solutions, allowing for direct use in purification in which removal of >99.99% iron from an HCl/FeCl
induced cleavage was demonstrated. |
---|---|
ISSN: | 1523-7060 1523-7052 |
DOI: | 10.1021/acs.orglett.4c02569 |