Homoleptic Cobalt(II) Phenoxyimine Complexes for Hydrosilylation of Aldehydes and Ketones without Base Activation of Cobalt(II)
Air-stable, easy to prepare, homoleptic cobalt(II) complexes bearing pendant-modified phenoxyimine ligands were synthesized and determined. The complexes exhibited high catalytic performance for reducing aldehydes and ketones via catalytic hydrosilylation, where a hydrosilane and a catalytic amount...
Gespeichert in:
Veröffentlicht in: | Organometallics 2021-05, Vol.40 (9), p.1379-1387 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Air-stable, easy to prepare, homoleptic cobalt(II) complexes bearing pendant-modified phenoxyimine ligands were synthesized and determined. The complexes exhibited high catalytic performance for reducing aldehydes and ketones via catalytic hydrosilylation, where a hydrosilane and a catalytic amount of the cobalt(II) complex were added under base-free conditions. The reaction proceeded even in the presence of excess water, and excellent functional-group tolerance was observed. Subsequent hydrolysis gave the alcohol in high yields. Moreover, H2O had a critical role in activation of the Co(II) catalyst with hydrosilane. Several additional results also indicated that the cobalt(II) center acts as an active catalyst in the hydrosilylation of aldehydes and ketones. |
---|---|
ISSN: | 0276-7333 1520-6041 |
DOI: | 10.1021/acs.organomet.1c00151 |