Development of a Practical, Biocatalytic Synthesis of tert-Butyl (R)‑3-Hydroxyl-5-hexenoate: A Key Intermediate to the Statin Side Chain

The HMG-CoA reductase inhibitors, statins, are one of the most effective and bestselling cholesterol-lowering drugs. The use of statins has greatly extended people’s lives and improved the quality of their life. Development of a more efficient, stereoselective, and sustainable synthesis of statins i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Organic process research & development 2020-09, Vol.24 (9), p.1700-1706
Hauptverfasser: Hu, Chen, Liu, Minjie, Yue, Xiaoping, Huang, Zedu, Chen, Fener
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The HMG-CoA reductase inhibitors, statins, are one of the most effective and bestselling cholesterol-lowering drugs. The use of statins has greatly extended people’s lives and improved the quality of their life. Development of a more efficient, stereoselective, and sustainable synthesis of statins is continuingly of utmost importance. In the present study, through screening of ketoreductases (KREDs) and reaction optimization, we have successfully performed a highly stereoselective reduction of ketoester 1a catalyzed by KRED-06 at a pilot-plant scale without the addition of exogenous NADP+, generating 3.21 kg of enantiomerically pure tert-butyl (R)-3-hydroxyl-5-hexenoate ((R)-2a) (96.2% yield, >99.9% enantiomeric excess (ee)). This newly developed biocatalytic process alleviates the cryogenic conditions (−40 °C) employed in our first-generation synthesis of (R)-2a using NaBH4 and (l)-tartaric acid. Coupled with our previously established synthesis of bromocarbonate 3a via a one-pot diastereoselective carboxylation/bromocyclization of (R)-2a, we have developed an innovative, practical synthesis route to statin side chain, possessing great potential to be implemented into industrial production of statins.
ISSN:1083-6160
1520-586X
DOI:10.1021/acs.oprd.0c00320