Fe 3 O 4 @TiO 2 -Laden Neutrophils Activate Innate Immunity via Photosensitive Reactive Oxygen Species Release

Although a variety of advanced sterilization materials and treatments have emerged, the complete elimination of bacterial infection, especially drug-resistant bacterial infection, remains an immense challenge. Here, we demonstrate the use of neutrophils loaded with photocatalytic nanoparticles to re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2020-01, Vol.20 (1), p.261-271
Hauptverfasser: Zhang, Peng, Zhao, Qin, Shi, Miusi, Yin, Chengcheng, Zhao, Zifan, Shen, Kailun, Qiu, Yun, Xiao, Yin, Zhao, Yanbing, Yang, Xiangliang, Zhang, Yufeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Although a variety of advanced sterilization materials and treatments have emerged, the complete elimination of bacterial infection, especially drug-resistant bacterial infection, remains an immense challenge. Here, we demonstrate the use of neutrophils loaded with photocatalytic nanoparticles to reduce bacterial infection. This method activates the immune system to achieve an anti-infection response. We prepared the photocatalytic nanoparticle-laden neutrophils in vivo through neutrophil phagocytosis. The resulting loaded cells retained the cell membrane functionality of the source cell, as well as the complete immune cell function of neutrophils, particularly the ability to recruit macrophages to the target area. Photocatalytic nanoparticle-laden neutrophils can target infection sites and release reactive oxygen species to induce the secretion of chemokines, leading to the targeted recruitment of macrophages and enhancing a powerful immune cascade. In a severe mouse infection model induced by pathogenic bacteria, small doses of photocatalytic nanoparticle-laden neutrophils showed a remarkable therapeutic effect by enhancing macrophage recruitment and the immune cascade.
ISSN:1530-6984
1530-6992
DOI:10.1021/acs.nanolett.9b03777